[1]董庆利, 胡孟晗. 应用计算机视觉评定肉类品质的研究进展[J]. 现代食品科技, 2011, 27(2): 209-212.
Dong Q L, Hu M H. Research progress of computer vision in meat quality evaluation[J]. Modern food science and technology, 2011, 27(2): 209-212.
[2]邢雪亮, 甘文波, 蒋朝根. 基于机器视觉的航空铆钉尺寸检测技术[J]. 计量学报, 2020, 41(5): 518-523.
Xing X L, Gan W B, Jiang C G. Technology of Size Detection of Air Rivets Based on Machine Vision[J]. Acta Metrologica Sinica, 2020, 41(5): 518-523.
[3]刘家丰, 李东波. 基于Lab色彩空间的自适应K-means图像分割方法[J]. 机械设计与制造工程, 2018, 47(12): 23-27.
Liu J F, Li D B. Adaptive k-means image segmentation method based on Lab color space[J]. Mechanical design and manufacturing engineering, 2018, 47(12): 23-27.
[4]Said A B, Foufou S, Abidi M. A FCM and SURF Based Algorithm for Segmentation of Multispectral Face Images[C]// IEEE International Conference on Signal-Image Technology & Internet-Based Systems. Kyoto, Japan, 2013: 65-70.
[5]夏志巍. 基于模糊聚类的图像分割方法[D]. 南京:南京信息工程大学, 2018.
[6]张晴晴, 张云龙, 齐国红, 等. 基于直觉模糊C均值聚类算法的作物病害图像分割[J]. 安徽农业科学, 2019, 47(5): 233-236.
Zhang Q Q, Zhang Y L, Qi G H, et al. Crop disease image segmentation based on intuitionistic fuzzy c-means clustering algorithm[J]. Anhui agricultural science, 2019, 47(5): 233-236.
[7]王新宁, 林相波, 袁珍. 基于 FCM聚类算法的MRI脑组织图像分割方法比较研究[J]. 北京生物医学工程, 2015, 34(3): 221-228.
Wang X N, Lin X B, Yuan Z. MRI brain image segmentation based on FCM clustering algorithm method comparative study[J]. Journal of biomedical engineering in Beijing, 2015, 34(3): 221-228.
[8]Chen S C, Zhang D Q. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J].
IEEE Transactions on Systems Man & Cybernetics Part B Cybernetics A Publication of the IEEE Systems Man & Cybernetics Society, 2004, 34(4): 1907-1916.
[9]Kumar D, Verma H, Mehra A, et al. A modified intuitionistic fuzzy c-means clustering approach to segment human brain MRI image[J]. Multimedia Tools and Applications, 2019, 78: 12663–12687.
[10]Zadeh L A. Fuzzy Sets[J]. Information and Control, 1965, 8(3): 338-353.
[11]Kaufmann A.
Introduction to the Theory of Fuzzy Subsets: Fundamental Theoretical Elements[M]. New York: Academic Press, 1975.
[12]Yager R R. On the measures of fuzziness and negation part II lattices[J]. Information and Control, 1980, 44: 236-260.
[13]Szmidt E, Kacpryzk J. Entropy of an intuitionistic fuzzy set[J]. Fuzzy Sets and Systems, 2001, 118: 467-477.
[14]伍学千. 基于计算机视觉技术的猪肉品质检测与分级研究[D]. 杭州:浙江大学, 2010.
[15]唐浩, 王克俭, 李晓烨, 等. 基于色差聚类的原木图像端面检测与统计[J]. 计量学报, 2020, 41(6): 682-688.
Tang H, Wang K J, Li X Y, et al. Logs End Detection and Statistics by Color Difference Clustering[J]. Acta Metrologica Sinica, 2020, 41(6): 682-688.
[16]汤正华. 基于改进蝙蝠优化自确定的模糊C-均值聚类算法[J]. 计量学报, 2020, 41(4): 505-512.
Tang Z H. Self-Defined Fuzzy Clustering C-Means Algorithm Based on Improved Bat Optimization[J]. Acta Metrologica Sinica, 2020, 41(4): 505-512. |