|
|
The Uncertainty Evaluation of Seebeck Coefficient of Thermoelectric Materials |
LI Shuo1,GUO Tao2,YAO Ya-xuan1,REN Ling-ling1 |
1. Center for Advanced Measurement Science, National Institute of Metrology, Beijing 100029, China
2. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China |
|
|
Abstract The thermoelectric materials are new functional materials, which can make the mutual transformation of thermal and electric energy directly. The Seebeck coefficient is the key parameter to evaluate the property of thermoelectric materials and its accurate measurement is very important. Based on the accurate measurement method, the traceability path of Seebeck coefficient was established, and the traceability of test apparatus were studied. The measurement uncertainty of P-type bismuth telluride Bi2Te3 bulk thermoelectric material was evaluated, and the relative expanded uncertainty was 0.46%~2.52% (k=2).
|
Received: 22 August 2019
Published: 20 August 2021
|
|
|
|
|
[1]李洪涛, 朱志秀, 吴益文, 等. 热电材料的应用和研究进展[J]. 材料导报, 2012, 26(8): 57-61.
Li H T, Zhu Z X, Wu Y W, et al. Progress of application and research of thermoelectric materials[J]. Materials Reports, 2012, 26(8): 57-61.
[2]赵昆渝, 葛振华, 李智东. 新热电材料概论[M]. 北京: 科学出版社, 2016.
[3]李蒙, 李洪涛, 郅惠博, 等. 热电材料塞贝克系数测试影响因素研究[J]. 中国测试, 2014, 40(4): 132-136.
Li M, Li H T, Zhi H B, et al. Study on measurement of Seebeck coefficient for thermoelectric materials[J]. China Measurement & Test, 2014, 40(4): 132-136.
[4]陈立东, 熊震, 柏胜强. 纳米复合热电材料研究进展[J]. 无机材料学报, 2010, 25(6): 561-568.
Chen L D, Xiong Z, Bai S Q. Recent Progress of Thermoelectric Nano-composites[J]. Journal of Inorganic Materials, 2010, 25(6): 561-568.
[5]徐桂英, 葛昌纯. 热电材料的研究和发展方向[J]. 材料导报, 2010, 14(11): 38-41.
Xu G Y, Ge C C. Direction of research and development of thermoelectric materials[J]. Materials Reports, 2010, 14(11): 38-41.
[6]Lowhorn N D, Wong-Ng W, Lu Z Q, et al. Development of a seebeck coefficient standard reference materialTM[J]. Journal of Materials Research, 2011, 26(15): 1983-1992.
[7]Lowhorn N D, Wong-Ng W, Lu Z Q, et al. Development of a seebeck coefficient standard reference material[J]. Applied Physics A, 2009, 96(2): 511-514.
[8]高敏, 张景韶, Row D M. 温差电转换及其应用[M]. 北京: 兵器工业出版社, 1996.
[9]Martin J. Apparatus for the high temperature measurement of the Seebeck coefficient in thermoelectric materials[J]. Review of Scientific Instruments, 2012, 83: 065101.
[10]Martin J, Tritt T, Uher C. High temperature Seebeck coefcient metrology[J]. Journal of Applied Physics, 2010, 108: 121101.
[11]Martin J, Wong-Ng W, Green M L. Seebeck Coefcient Metrology: Do Contemporary Protocols Measure Up?[J]. Journal of Electronic Materials, 2015, 44(6): 1998-2006.
[12]Wei T R, Guan M, Yu J, et al. How to measure thermoelectric properties reliably[J]. Joule, 2018, 2(11): 2183-2188.
[13]倪育才. 实用测量不确定度评定[M]. 2版. 北京: 中国计量出版社, 2009.
[14]刘园园, 杨健, 赵希勇, 等. GUM法和MCM法评定测量不确定度对比分析[J]. 计量学报, 2018, 39(1): 135-139.
Liu Y Y, Yang J, Zhao X Y, et al. Comparative Analysis of Uncertainty Measurement Evaluation with GUM and MCM[J]. Acta Metrologica Sinica, 2018, 39(1): 135-139.
[15]陈凌峰. 标准不确定度A类评定中极差法的深入讨论[J]. 计量学报, 2019, 40(2): 347-352.
Chen L F. The Further Discussion of the Range Method in the Type A Evaluation of Standard Uncertainty[J]. Acta Metrologica Sinica, 2019, 40(2): 347-352.
[16]GB∕T 16839. 1-2018 热电偶 第1部分: 电动势规范和允差[S].
[17]郑玮, 汤磊. 标准铂铑10-铂热电偶热电势约束公式探讨[J]. 计量学报, 2020, 41(2): 175-178.
Zheng W, Tang L. The Research on the Constraint Formulas of EMFs as a Standard Pt-10% Rh/Pt Thermocouple[J]. Acta Metrologica Sinica, 2020, 41(2): 175-178. |
|
|
|