|
|
High-order Dynamic Model and Simulation of Closed-loop Fiber-optic Current Sensor |
LI Qi1,LI Chuan-sheng2,ZHAO Ye-ming3,SHAO Hai-ming2,CAI Jin-hui1 |
1. China Jiliang University, Hangzhou, Zhejiang 310018, China
2. National Institute of Metrology, Beijing 100029, China
3. Beijing Information Science and Technology University, Beijing 100085, China |
|
|
Abstract In order to study the pulse current measurement capability of the fiber-optic current sensor, a high-order dynamic model of the sensor in the discrete domain was established, and the step response and frequency response characteristics of the sensor were simulated and analyzed based on Simulink. The results show that increasing the forward gain can improve the sensors response speed and the bandwidth, but too large forward gain will cause the system to overshoot the oscillation, the moving average filter will obviously suppress the overshoot oscillation, but it will also reduce the systems response speed and measurement bandwidth. Finally, a frequency response test platform was built, and the frequency response characteristics of the sensor were tested under different forward gains and filter orders, the non-reciprocal step phase difference was introduced based on the phase modulation principle of the sensor, and the equivalent test of the step response was achieved. The test results of frequency response characteristics and step response characteristics are in good agreement with the simulation results, which proves the accuracy of the model.
|
Received: 30 January 2020
Published: 23 June 2021
|
|
|
|
|
[1] Schoenbach K H, Katsuki S, Stark R H, et al. Bioelectrics-new applications for pulsed power technology[J]. IEEE Transactions on Plasma Science, 2002, 30(1): 293-300.
[2]
Akiyama H, Sakugawa T, Namihira T, et al. Industrial Applications of Pulsed Power Technology[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1051-1064.
Akiyama H, Katsuki S, Redondo L, et al. Pulsed Power Technology[M]. Springer Japan, 2017.
[3] 郑建毅, 何闻. 脉冲功率技术的研究现状和发展趋势综述[J]. 机电工程, 2008, 25(4): 1-4.
Zheng J Y, He W. Review of the Research Status and Development Trends of Pulse Power Technology [J]. Mechanical and Electrical Engineering, 2008, 25(4): 1-4.
[4] 王书强, 张军齐, 崔绍颖, 等. 脉冲大电流校准及溯源技术研究[J]. 计量学报, 2020, 41(3): 296-300.
Wang S Q, Zhang J Q, Cui S Y, et al. Pulse High Current Calibration System [J]. Acta Metrologica Sinica, 2020, 41(3): 296-300.
[5] 王珏, 张适昌, 严萍, 等. 用自积分式罗氏线圈测量纳秒级高压脉冲电流[J]. 强激光与粒子束, 2004, (3): 128-132.
Wang Y, Zhang S C, Yan P, et al. Measuring nanosecond high-voltage pulse current with self-integrating Rogowski coil [J]. High Power Laser and Particle Beams, 2004, (3): 128-132.
[6] 李传生, 邵海明, 赵伟, 等. 超大电流量值传递用光纤电流传感技术[J]. 红外与激光工程, 2017, (7): 114-120.
Li C S, Shao H M, Zhao W, et al. Fiber-optic current sensing technology for ultra-large current value transfer [J]. Infrared and Laser Engineering, 2017, (7): 114-120.
[7] Xu S, Li W, Xing F, et al. Polarimetric current sensor based on polarization division multiplexing detection[J]. Optics Express, 2014, 22(10): 11985.
[8] Xu S, Li W, Wang Y, et al. Stray current sensor with cylindrical twisted fiber[J]. Applied Optics, 2014, 53(24): 5486.
[9] 王娜, 万全, 邵霞, 等. 全光纤电流互感器的建模与仿真技术研究[J]. 湖南大学学报: 自然科学版, 2011, 38(10): 44-49.
Wang N, Wan Q, Shao X, et al. Modeling and Simulation Technology of All-fiber Current Transformer [J]. Journal of Hunan University: Natural Science, 2011, 38(10): 44-49.
[10] 于佳, 张春熹, 王夏霄, 等. 环路增益对光纤电流互感器测量准确度的影响[J]. 中国激光, 2016, 43(9): 239-246.
Yu J, Zhang CZ, Wang X X, et al. Influence of loop gain on measurement accuracy of fiber-optic current transformers [J]. China Laser, 2016, 43(9): 239-246.
[11] 张朝阳, 张春熹, 王夏霄, 等. 反射式光纤电流传感器频率特性计算和测试[J]. 光电工程, 2007, (7): 92-96.
Zhang C Y, Zhang C Y, Wang X X, et al. Calculation and test of frequency characteristics of reflective fiber-optic current sensors [J]. Opto-Electronic Engineering, 2007, (7): 92-96.
[12] 李奇, 李传生, 邵海明, 等. 光纤直流大电流传感器非线性机理及校准技术[J]. 计量学报, 2021, 42(4):409-414.
Li Q, Li C S, Shao H M, et al. Nonlinear Mechanism and Calibration Technology of Fiber-Optic DC High Current Sensor [J]. Acta Metrologica Sinica, 2021, 42(4):409-414..
[13] 叶炜, 倪永锋, 赵为党, 等. 闭环光纤陀螺全数字式信号检测方法研究[J]. 光子学报, 1998, 27(4): 334-337.
Ye W, Ni Y F, Zhao W D, et al. Research on Full Digital Signal Detection Method of Closed-loop Fiber Optic Gyroscope [J]. Acta Photonica Sinica, 1998, 27(4): 334-337.
[14] 张朝阳, 张春熹, 王夏霄, 等. 数字闭环全光纤电流互感器信号处理方法[J]. 中国电机工程学报, 2009, 30(7): 44-48.
Zhang C Y, Zhang C X, Wang X X, et al. Signal processing method of digital closed-loop all-fiber current transformer [J]. Transactions of China Electrical Engineering, 2009, 30(7): 44-48.
[15] 王夏霄, 张春熹, 张朝阳, 等. 一种新型全数字闭环光纤电流互感器方案[J]. 电力系统自动化, 2006, 30(16): 77-80.
Wang X X, Zhang C X, Zhang C Y, et al. A new all-digital closed-loop optical fiber current transformer scheme [J]. Automation of Electric Power Systems, 2006, 30(16): 77-80.
[16] 谢小军,朱才溢,李庆先,等. 反射式Sagnac型光纤宽带大电流测量仪的研制与性能评估[J]. 计量学报, 2020, 41(8): 989-996.
Xie X J, Zhu C Y, Li Q X, et al. Development and Performance Evaluation of Reflective Sagnac Optical Fiber Broadband High Current Measuring Instrument[J]. Acta Metrologica Sinica, 2020, 41(8): 989-996.
[17] 王巍, 吴维宁, 王学锋. 调制器调制系数对光纤电流互感器测量精度的影响[J]. 电力系统自动化, 2012, 36(24): 64-68.
Wang W, Wu W N, Wang X F. Influence of Modulator Modulation Coefficient on Measurement Accuracy of Fiber Optic Current Transformer [J]. Automation of Electric Power Systems, 2012, 36(24): 64-68.
[18] 王立辉, 杨志新, 殷明慧, 等. 数字闭环光纤电流互感器动态特性仿真与测试[J]. 仪器仪表学报, 2010, 31(8): 1890-1895.
Wang L H, Yang Z X, Yin M H, et al. Simulation and test of dynamic characteristics of digital closed-loop fiber optic current transformers [J]. Journal of Instrumentation, 2010, 31(8): 1890-1895.
[19] 李传生, 邵海明, 赵伟, 等. 直流光纤电流互感器宽频测量特性[J]. 电力系统自动化, 2017, 41(20): 157-162.
Li C S, Shao H M, Zhao W, et al. Broadband measurement characteristics of DC fiber optic current transformers [J]. Automation of Electric Power Systems, 2017, 41(20): 157-162. |
|
|
|