|
|
Bearing Fault Diagnosis of Wind Turbine Based on Multi-wavelet-1D Convolutional LSTM |
CHEN Wei-xing1,CUI Chao-chen1,LI Xiao-jing1,ZHAO Hui2 |
1. Civil Aviation University of China, Tianjin 300300, China
2. 31439 Troops of the Chinese Peoples Liberation Army, Shenyang, Liaoning 110000, China |
|
|
Abstract To solve the problem of high false alarm rate of wind turbine bearing fault diagnosis under complex conditions, an end-to-end hybrid deep learning framework is proposed. One-dimensional convolutional recurrent neural network based on multiple wavelet transforms (multi-wavelet-1D Convolutional LSTM, Mw-1DConvLSTM). Firstly, multiple time-frequency maps are obtained by multiple wavelet transforms to fully extract the signal features. Then, an extended LSTM is used to extract different time step information of multi-channel time-frequency maps, and time-space characteristics of time-frequency data are captured. Finally, the fault state is classified by the global pooling layer and the classification layer. The test results show that under complex conditions, Mw-1DConvLSTM can achieve more than 95% fault identification of wind turbine bearing faults.
|
Received: 18 August 2019
Published: 24 May 2021
|
|
Fund:Central University's basic research business Civil Aviation University of China special fund project;Central University's basic research business Civil Aviation University of China special fund project |
|
|
|
[1]Hoang D T, Kang H J. A survey on Deep Learning based bearing fault diagnosis[J]. Neurocomputing, 2019, 335(28):327-335.
[2]Wei Z, Peng G L, Li C H, et al. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and Domain Adaptation Ability on Raw Vibration Signals[J]. Sensors, 2017, 17(2):452.
[3]程淑红, 张仕军, 赵考鹏. 基于卷积神经网络的生物式水质监测方法[J]. 计量学报, 2019, 40(4): 721-727.
Cheng S H, Zhang S J, Zhao K P. Biological Water Quality Monitoring Method Based on Convolution Neural Network[J]. Acta Metrologica Sinica, 2019, 40(4): 721-727.
[4]胡茑庆, 陈徽鹏, 程哲, 等. 基于经验模态分解和深度卷积神经网络的行星齿轮箱故障诊断方法[J]. 机械工程学报, 2019, 55(7): 9-18.
Hu N Q, Chen H P, Cheng Z, et al. Fault Diagnosis for Planetary Gearbox Based on EMD and Deep Convolutional Neural Networks[J]. Journal of Mechanical Engineering, 2019, 55(7): 9-18.
[5]Han T, Liu C, Wu L J, et al. An adaptive spatiotemporal feature learning approach for fault diagnosis in complex systems[J]. Mechanical Systems and Signal Processing, 2019, 117:170-187.
[6]陈仁祥, 黄鑫, 杨黎霞, 等. 基于卷积神经网络和离散小波变换的滚动轴承故障诊断[J]. 振动工程学报, 2018, 31(5): 883-891.
Chen R X, Huang X, Yang L X, et al. Rolling bearing fault identification based on convolution neural network and discrete wavelet transform[J]. Journal of Vibration Engineering, 2018, 31(5): 883-891.
[7]李恒, 张氢, 秦仙蓉, 等. 基于短时傅里叶变换和卷积神经网络的轴承故障诊断方法[J]. 振动与冲击, 2018, 37(19): 124-131.
Li H, Zhang Q, Qin X R, et al. Fault diagnosis method for rolling bearings based on short-time Fourier transform and convolution network[J]. Journal of Vibration and Shock, 2018, 37(19): 124-131.
[8]Zeng X Q, Liao Y X, Li W H. Gearbox fault classification using S-transform and convolutional neural network[C]// 2016 10th International Conference on Sensing Technology (ICST).Nanjing,2016.
[9]马平, 司志宁. 基于小波变换的CT/ECT图像融合方法[J]. 计量学报, 2018, 39(4): 536-540.
Ma P, Si Z N. A Method of CT/ECT Image Fusion Based on Wavelet Transform[J]. Acta Metrologica Sinica, 2018, 39(4): 536-540.
[10]Zhu J, Chen N, Peng W W. Estimation of Bearing Remaining Useful Life Based on Multiscale Convolutional Neural Network[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3208-3216.
[11]Antoni J, Bonnardot F, Raad A, et al. Cyclostationary modelling of rotating machine vibration signals[J]. Mechanical Systems and Signal Processing, 2004, 18(6): 1285-1314.
[12]李继猛,李铭,姚希峰,等. 基于集合经验模式分解和K-奇异值分解字典学习的滚动轴承故障诊断[J]. 计量学报, 2020, 41(10): 1260-1266.
Li J M, Li M, Yao X F, et al. Rolling Bearing Fault Diagnosis Based on Ensemble Empirical Mode Decomposition and K-Singular Value Decomposition Dictionary Learning[J]. Acta Metrologica Sinica, 2020, 41(10): 1260-1266.
[12]何志坚, 周志雄, 黄向明. 基于变分模态分解的关联维数及相关向量机的刀具磨损状态监测[J]. 计量学报, 2018, 39(2): 182-186.
He Z J, Zhou Z X, Huang X M. Tool Wear State Monitoring Based on Variational Mode Decomposition and Correlation Dimension and Relevance Vector Machine [J]. Acta Metrologica Sinica, 2018, 39(2): 182-186.
[13]Zhang L, Xiong G L, Liu H S, et al. Bearing fault diagnosis using multi-scale entropy and adaptive neuro-fuzzy inference[J]. Expert Systems with Applications, 2010, 37(8): 6077-6085.
[14]Jiang G Q, He H B, Yan J, et al. Multiscale Convolutional Neural Networks for Fault Diagnosis of Wind Turbine Gearbox[J]. IEEE Transactions on Industrial Electronics, 2019, 66(4): 3196-3207.
[15]Mallick A, Singh S N, Mohapatra At. Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting[J]. Renewable Energy, 2019, 136: 758-768.
[16]Shi X J, Chen Z R, Wang H, et al. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting[J]. Computer Science, 2015, arXiv: 1506. 04214.
[17]Zhu G M, Zhang L, Shen P Y, et al. Continuous Gesture Segmentation and Recognition Using 3DCNN and Convolutional LSTM[J]. IEEE Transactions on Multimedia, 2019, 21(4): 1011-1021.
[18]Wang Y J, Luo B N, Shen J, et al. Face Mask Extraction in Video Sequence[J]. International Journal of Computer Vision, 2019, 127(6-7SI): 625-641.
[19]Ma P,Zhang H L, Fan W H, et al. A novel bearing fault diagnosis method based on 2D image representation and transfer learning-convolutional neural network[J]. Measurement Science and Technology, 2019, 30(5): 0554025.
[20]朱会杰, 王新晴, 芮挺, 等. 基于平移不变CNN的机械故障诊断研究[J]. 振动与冲击, 2019, 38(5): 45-52.
Zhu H J, Wang X Q, Rui T, et al. Machinery fault diagnosis based on shift invariant CNN[J]. Journal of Vibration and Shock, 2019, 38(5): 45-52. |
|
|
|