|
|
Three Dimensional Force Sensor for Biomechanical Measurement Based on Capacitance Principle |
YANG Shu-yan,SUN Dong-jie,LI Dan-ruo,SONG Ai-guo |
School of Instrument Science and Engineering, Southeast University, Nanjing, Jiangsu 210018, China |
|
|
Abstract To realize biomechanical measurement, a capacitive three dimensional force sensor was developed with low temperature drift and low power consumption. A novel structure of the elastomer was designed, and the polyurethane foam was used as the medium. The sensor can perceive the force components of three dimensions and convert them into capacitance changes of three channels simultaneously. After finite element simulation used ANSYS, the size of the sensor was determined, and the measuring range of each dimension reached ±200N with safety overload more than 150%. A measurement system composed of capacitor acquisition module and signal processing module was designed. The integration design made the calculation and output of measurement data real-time. In addition, to decrease the impact of the hysteresis effect and the inter-dimensional coupling, the hysteresis compensating and decoupling model was established. The experiment results show that the Class I Error is below 2.8% while the Class II Error is below 4.6%.
|
Received: 16 July 2019
Published: 20 April 2021
|
|
|
|
|
[1]Song A G, Wu J, Qin G, et al. A novel self-decoupled four degree-of-freedom wrist force/torque sensor[J]. Measurement, 2007, 40(9-10): 883-891.
[2]Ma J Q, Song A G. Fast estimation of strains for cross-beams six-axis force/torque sensors by mechanical modeling[J]. Sensors, 2013, 13(5): 6669-6686.
[3]Song A G, Han Y Z, Hu H H, et al. A novel texture sensor for fabric texture measurement and classification[J]. IEEE Transactions on Instrumentation and Measure-ment, 2013, 63(7): 1739-1747.
[4]Payo I, Adánez J M, Rosa D R, et al. Six-Axis Column-Type Force and Moment Sensor for Robotic Applications[J]. IEEE Sensors Journal, 2018, 18(17): 6996-7004.
[5]韩亚丽, 吴振宇, 徐泳龙, 等. 基于足底压力信号的步态识别[J]. 计量学报, 2019, 40(5): 842-847.
Han Y L, Wu Z Y, Xu Y L, et al. Gait recognition based on plantar pressure signal[J]. Acta Metrologica Sinica, 2019, 40(5): 842-847.
[6]张强, 宋爱国, 刘玉庆, 等. 一种指尖三维力传感器设计[J]. 计量学报, 2018, 39(1): 52-55.
Zhang Q, Song A G, Liu Y Q, et al. Design of a Three Dimensinal Fore Sensor[J]. Acta Metrologica Sinica, 2018, 39(1): 52-55.
[7]王友贵, 吴双双, 陈红江. 称重传感器蠕变误差的神经网络补偿方法[J]. 计量学报, 2018, 39(4): 510-514.
Wang Y G, Wu S S, Chen H J. Compensation Method for Creep Error of Load Cell Based on Neural Networks[J]. Acta Metrologica Sinica, 2018, 39(4): 510-514.
[8]Liu J, Li M, Qin L, et al. Active design method for the static characteristics of a piezoelectric six-axis force/torque sensor[J]. Sensors, 2014, 14(1): 659-671.
[9]Liu Y J, Wang G C, Zhao D, et al. Research on a novel parallel spoke piezoelectric 6-DOF heavy force/torque sensor[J]. Mechanical Systems and Signal Processing, 2013, 36(1):152-167.
[10]刘秀洁, 张洪泉. 一种双面变极距电容式海水压力传感器的研究[J]. 仪表技术与传感器, 2018, (10):1-5.
Liu X J, Zhang H Q. Research on Doubleside Variable-distance Capacitive Seawater Pressure Sensor[J]. Instrument Technique and Sensor, 2018, (10): 1-5.
[11]Vahid G, Nima T, Hadi V, et al. Design, analysis and optimization of a novel capacitive pressure sensor based on vertical comb-grid configuration[C]// ICRoM. 2014:498-502.
[12]许德成, 郭小辉. 用于仿生皮肤的电容式三维力触觉感知系统[J]. 吉林大学学报 (信息科学版), 2015, 33(06): 652-657.
Xu D C, Guo X H. Capacitive Three-Dimensional Force Tactile Perception System for Artificial Skin[J]. Journal of Jilin University (Information Science Edition), 2016, 33(6): 652-657.
[13]Viry L, Levi A, Totaro M, et al. Flexible three‐axial force sensor for soft and highly sensitive artificial touch[J]. Advanced materials, 2014, 26(17):2659-2664.
[14]吴哲琼, 范锦彪, 王雪姣. 电容式电子测压器的边缘效应分析[J].中国测试, 2018, 44(5): 142-146.
Wu Z Q, Fan J B, Wang X J. Edge effect analysis of capacitive electronic pressure measuring device[J]. China Measurement & Test, 2018, 44(5): 142-146.
[15]况荣华, 容太平. I2C总线协议及其应用[J]. 今日电子, 2000, (10): 17-20.
Kuang R H, Rong T P. I2C bus protocol and its application[J]. Electronic Products, 2000, (10): 17-20.
[16]张加宏, 刘震宇, 李敏, 等. 阵列式无线压力传感器系统设计与迟滞补偿研究[J]. 电子器件, 2018, 41(2): 447-453.
Zhang J H, Liu Z Y, Li M, et al. Design of Array-Type Wireless Pressure Sensor System and Research on Hyster-esis Compensation[J]. Chinese Journal of Elec-tron Devices, 2018, 41(2): 447-453.
[17]蒋红娜, 白雪, 朱丽. 压阻式差压传感器的迟滞非线性建模与补偿[J]. 电子测量技术, 2016, 39(6): 138-140.
Jiang H N, Bai X, Zhu L. Construction and compensation of hysteresis nonlinearity for piezoresistive differential sensor[J]. Electronic Measurement Technology, 2016, 39(06): 138-140.
[18]谢煜, 刘翠梅, 杨三序. 电容称重传感器的迟滞性补偿[J]. 仪表技术与传感器, 2007, (12): 6-8.
Xie Y, Liu C M, Yang S X. Hysteresis Performance Compensation of Capacitance Weighing Transducer[J]. Instrument Technique and Sensor, 2007,(12): 6-8.
[19]武秀秀, 宋爱国, 王政. 六维力传感器静态解耦算法及静态标定的研究[J]. 传感技术学报, 2013, 26(6): 851-856.
Wu X X, Song A G, Wang Z. Research on static decoupling algorithm and static calibration of sixdimen-sional force sensor[J]. Chinese Journal of Sensors and Actuators, 2013, 26(6): 851-856.
[20]Beyeler F, Muntwyler S, Nelson B J. Design and calibration of a microfabricated 6-axis forcetorque sensor for microrobotic applications[C]//ICRA, 2009: 520-525.
[21]李映君, 韩彬彬, 王桂从, 等. 基于径向基函数神经网络的压电式六维力传感器解耦算法[J]. 光学精密工程, 2017, 25(5):1266-1271.
Li Y J, Han B B, Wang G C, et al. Decoupling algorithms for piezoelectric six-dimensinal force sensor based on RBF neural network[J]. Optics and Precision Engineering, 2017, 25(5): 1266-1271.
[22]夏秋, 潘广香, 卢淑群, 等. 基于独立成分分析法的多维力传感器静动态解耦研究[J]. 蚌埠学院学报, 2017, 6(4): 4-7.
Xia Q, Pan G X, Lu S Q, et al. Research on Decoupling of Multi-Axis Force Sensor Based on ICA[J]. Journal of Bengbu University, 2017, 6(4): 4-7.
[23]付立悦, 宋爱国. 六维力传感器静态标定系统误差分析[J]. 计量学报, 2019, 40(2): 295-299.
Fu L Y, Song A G. Error Analysis of Six-axis Force/Torque Sensors Static Calibration System[J]. Acta Metrologica Sinica, 2019, 40(2): 295-299. |
|
|
|