|
|
Study on active dual-wavelength infrared laser thermometry calibration experiments |
QU Yan1,HUAN Ke-wei1,AN Bao-lin2,DONG Wei2,ZHAO Yun-long2,SONG Xu-yao1,YUAN Zun-dong2 |
1. Changchun University of Science and Technology, Changchun, Jilin 130022, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract Based on active dual-wavelength infrared laser thermometry method, it is possible to measure the true surface temperature when the emissivity is unknown. A high-precision calibration source is an important basis for the accuracy of dual-wavelength infrared thermometry system. However, there is a lack of public reports on such calibration sources in the current research work in the field of dual-wavelength temperature measurement. Therefore, an active infrared laser temperature measuring source is designed and built to study the stability and uniformity of the calibration source, and the dual-wavelength laser thermometry system is calibrated. The results show that the active dual-wavelength infrared laser temperature calibration source has good stability, and the maximum temperature deviation within 20 minutes at 1173K is 0.22K; the surface temperature uniformity is well, and the standard deviation of the surface temperature at 1173K is 0.34K. When the true temperature of the source surface is above 923K, the relative standard deviation of the collected signal is less than 0.7%. The calibration experiment results show that the calibration source has good reliability for the accurate calibration of the active dual-wavelength infrared laser temperature measurement system.
|
Received: 30 October 2020
Published: 18 February 2021
|
|
|
|
|
[1]王文革. 辐射测温技术综述[J]. 宇航计测技术, 2005, 25(4): 20-24.
Wang W G. Survey of Radiation Thermometry Technology[J]. Journal of Astronautic Metrology and Measurement, 2005, 25(4): 20-24.
[2]卢小丰, 原遵东, 董伟, 等. 应用高温固定点校准精密光电高温计[J]. 计量学报, 2017, 38(5): 584-588.
Lu X F, Yuan Z D, Dong W, et al. Calibrating Pyrometer with High Temperature Fixed Points[J]. Acta Metrologica Sinica, 2017, 38(5): 584-588.
[3]常稼强, 郝小鹏, 吕彪, 等. 自校准地表/水表面红外辐射测温仪的研制[J]. 计量学报, 2019, 40(2): 240-245.
Chang J Q, Hao X P, Lü B, et al. Development of Self-calibrated Infrared Radiation Thermometer for Surface of Ground or Water[J]. Acta Metrologica Sinica, 2019, 40(2): 240-245.
[4]吕彪, 郝小鹏, 孙建平, 等. 水体剖面温度测量仪的研制[J]. 计量学报, 2019, 40(3): 440-446.
Lü B, Hao X P, Sun J P, et al. Development of a Water Profile Temperature Measuring Instrument[J]. Acta Metrologica Sinica, 2019, 40(3): 440-446.
[5]张岚, 蔡静, 路林锋. 影响辐射测温用黑体辐射源应用的因素分析[J]. 计测技术, 2020, 40(4): 1-4.
Zhang L, Cai J, Lu L F. Analysis of Factors Affecting Application of Blackbody Radiator for Radiation Thermometry[J]. Metrology & Measurement Technology, 2020, 40(4): 1-4.
[6]高山. 考虑运行环境影响的燃气轮机涡轮叶片辐射测温方法研究[D]. 哈尔滨: 哈尔滨工业大学, 2017.
[7]余跃, 陈学刚, 裴忠冶, 等. 高温测量技术及其在熔池测温中的应用进展[J]. 有色冶金节能, 2020, 36(2): 6-12.
Yu Y, Chen X G, Pei Z Y, et al. High Temperature Measurement Technology and its Applica-tion in Molten Pool[J]. Energy Saving of Nonferrous Metallurgy, 2020, 36(2): 6-12.
[8]刘雨薇, 龚仁蓉, 许瑞华, 等. 人体不同部位红外温度计体温测量值的比较研究[J]. 护理学杂志, 2020, 35(16): 59-62.
Liu Y W, Gong R R, Xu R H, et al. Comparison of body temperature measured at different parts of human body[J]. Journal of Nursing Science, 2020, 35(16): 59-62.
[9]何映锋,邓乐武,吴杰,等. 基于分段线性法的红外辐射计响应度标定研究[J]. 计量学报, 2020, 41(6): 646-649.
He Y F, Deng L W, Wu J, et al. Spectral Responsivity Calibration of Infrared Radiometer Based on Piecewise Linear Calibration Method[J]. Acta Metrologica Sinica, 2020, 41(6): 646-649.
[10]吕游. 基于中波红外的双波段目标辐射特性测量技术研究[D]. 长春: 长春光学精密机械与物理研究所, 2016.
[11]邢冀川, 刘广荣, 金伟其, 等. 双波段比色测温方法及其分析[J]. 红外技术, 2002,(6): 73-76.
Xing J C, Liu G R, Jin W Q, et al. Dual Waveband Chromatic Thermometry and Its Analysis[J]. Infrared Technology, 2002,(6): 73-76.
[12]张林, 张志杰, 李岩峰. 双波段比色测温技术的应用[J]. 现代电子技术, 2019, 42(8): 1-5.
Zhang L, Zhang Z J, Li Y F. Application of dual-waveband colorimetric temperature measurement technology[J]. Modern Electronics Technique, 2019, 42 (8): 1-5.
[13]胡子峰, 王昭君, 金路, 等. 非调制双色红外测温误差实时补偿方法研究[J]. 光学仪器, 2020, 42(3): 15-20.
Hu Z F, Wang Z J, Jin L, et al. Research on the real-time error compensation method of non-modulated colorimetric temperature measurement[J]. Optical Instruments, 2020, 42(3): 15-20.
[14]Dewitt D P, Kunz H. Theory and Technique for Surface Temperature Determinations by Measuring the Radiance Temperatures and Absorption Ratios for Two Wavelengths[J]. Temperature: Its Measurement and Control in Science and Industry, 1972, 4, 599-607.
[15]Bernhard Müller, Ulrich Renz. A Fast Fiber-optic Two-color Pyrometer for Temperature Measurements of Metallic Surfaces with Varying Emissivities[C]//The 8th Symposium on Temperature. Chicago, USA, 2003, 684: 741-746.
[16]Levick A P, Edwards G. A Fibre-Optic Based Laser Absorption Radiation Thermometry (LART) Instrument for Surface Temperature Measurement[J]. Analytical Sciences, 2001, 17: 438-441.
[17]王阔传, 张俊祺, 张奇. 激光吸收法辐射测温技术研究[J]. 宇航计测技术, 2018, 38(4): 23-27.
Wang K C, Zhang J Q, Zhang Q. Study of the Laser Absorption Radiation Thermometry[J]. Journal of Astronautic Metrology and Measurement, 2018, 38(4): 23-27.
[18]宋贵才, 全薇, 宦克为, 等. 红外物理学[M]. 北京: 清华大学出版社, 2018.
[19]吴清仁, 文璧璇. SiC材料导热系数和热膨胀系数与温度关系[J]. 华南理工大学学报: 自然科学版, 1996, 24(3): 11-15.
Wu Q R, Wen B X. Study on Temperature Dependence of Thermal Conductivity and Linear Expansion for SiC Material[J]. Journal of South China University of Technology(Natural Science), 1996, 24(3): 11-15.
[20]盛山菊, 卢小丰, 唐小洁, 等. 红外辐射温度计专用数字表的研制及评价[J]. 计量学报, 2019, 40(1): 20-24.
Sheng S J, Lu X F, Tang X J, et al. Development and Evaluation of Digital Meter for an Infrared Radiation Thermometer[J]. Acta Metrologica Sinica, 2019, 40(1): 20-24. |
|
|
|