|
|
DBN Structure Adaptive Learning Algorithm Based on Improved Genetic Algorithms |
SUN Mei-ting1,2,LIU Bin2 |
1. School of artificial intelligence and automation, Ministry of Information Science, Beijing University of Technology, Beijing 100124, China
2. School of College of Information Science and Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China |
|
|
Abstract Aiming at the NP-hardness problem of dynamic bayesian network, dynamic bayesian structure adaptive learning algorithm based on improved Genetic Algorithm is proposed. The maximum mutual information and timing mutual information are first used in the proposed algorithm to build initial structure, completing the initialization of the search space for DBN structures. Based on this, an improved genetic algorithm is presented. An adaptive control function of crossover probability and mutation probability is constructed introducing the grading standard deviation in order to reduce the probability of getting trapped in a local optimum. Compared with other optimization algorithm, experimental results indicates that the IMGA-DBN algorithm can significantly decrease nearly 30% and 37% in the hamming distance and running time separately. Meanwhile, IMGA-DBN increase 18.0% in the scoreing metric values without prior information.
|
Received: 02 April 2019
Published: 19 January 2021
|
|
Fund:;The National Natural Science Foundation of China |
|
|
|
[1]Larranaga P, Kuijpers C M H, Murga R H, et al. Learning Bayesian Network Structures by Searching for The Best Ordering with Genetic Algorithms[J]. Systems Man & Cybernetics Part A Systems & Humans IEEE Transactions on, 1996, 26(4): 487-493.
[2]李其然, 史玉彬, 陈志华, 等. 基于动态贝叶斯网络的民用机场空袭毁伤评估模型[J]. 弹道学报, 2018, 30(1): 93-96.
Li Q R, Shi Y B, Chen Z H, et al. Damage Assessment Model of Civil Airfield in an Air Raid Based on Dynamic Bayesian Network[J]. Journal of Ballistics, 2018, 30(1): 93-96.
[3]陈思, 魏晓阳, 吴青, 等. 基于动态贝叶斯的水上交通应急能力评估模型[J]. 统计与决策, 2018, 34(2): 57-60.
Chen S, Wei X Y, Wu Q, et al. Assessment Model of Emergency Capacity of Water Traffic Based on Dynamic Bayesian[J]. Statistics & Decision, 2018, 34(2): 57-60.
[4]刘浩然,孙美婷,王海羽, 等. 基于分类优化贝叶斯结构算法的篦冷机参数状态分析及其算法收敛性分析[J]. 计量学报,
2019 40(4): 662-667.
Liu H R, Sun M T, Wang H Y, et al. Parameter State Analysis of Grate Cooler Based on Bayesian Structure Algorithm Based on Classification Optimization and Convergence Analysis[J]. Acta Metrologica Sinica, 2019 40(4): 662-667.
[5]吕立程, 桑胜波. 动态贝叶斯网络的立体视觉疲劳概率评估[J]. 电光与控制, 2019, 3(10): 1-5
Lü L C, Sang S B. Stereoscopic Fatigue Probability Assessment of Dynamic Bayesian Networks[J]. Electronics Optics & Control, 2019, 3(10): 1-5
[6]戴志辉, 谢军, 陈曦, 等. 基于动态贝叶斯网络的智能变电站监控系统可靠性分析[J]. 电力系统保护与控制, 2018, 46(23): 68-76.
Dai Z H, Xie J, Chen X, et al. Reliability Analysis of Intelligent Substation Monitoring System Based on Dynamic Bayesian Network[J]. Power System Protection and Control, 2018, 46(23): 68-76.
[7]Vinh N X, Chetty M, Coppel R L, et al. Local and Global Algorithms for Learning Dynamic Bayesian Networks. [C]// IEEE International Conference on Data Mining. ShenZhen. China, 2013.
[8]冷翠平, 王双成, 王辉. 动态贝叶斯网络结构学习的依赖分析方法研究[J]. 计算机工程与应用, 2011, 47(3): 51-53.
Leng C P, Wang S C, Wang H. Study on Dependency Analysis Method for Learning Dynamic Bayesian Network Structure [J]. Computer Engineering and Applications, 2011, 47(3): 51-53.
[9]王飞, 刘大有, 卢奕南, 等. 基于遗传算法的动态Bayesian网结构学习的研究[J]. 电子学报, 2003, 31(5): 698-702.
Wang F, Liu D Y, Lu Y N, et al. Research on Dynamic Bayesian Network Structure Learning Based on Genetic Algorithms[J]. Acta Electronica Sinica, 2003, 31(5): 698-702.
[10]Jia H Y, Liu D Y, Yu P. Learning Dynamic Bayesian Network with Immune Evolutionary Algorithm[C]// International Conference on Machine Learning & Cybernetics. Houston. USA. 2005.
[11]洪越. 遗传算法在随机分布控制中的应用综述[J]. 现代工业经济和信息化, 2018, 8(17): 72-73.
Hong Y. A Summary of the Application of Genetic Algorithms in Random Distributed Control[J]. Modern Industrial Economy and Informationization, 2018, 8(17): 72-73.
[12]栗盼. 混合遗传算法综述[J]. 电子世界, 2015, 5(13): 69-70.
Li P. Overview of Hybrid Genetic Algorithms[J]. Electronics World, 2015, 5(13): 69-70.
[13]刘彬, 张春燃, 孙超, 等. 多种群遗传算法在篦冷机二次风温预测中的应用[J]. 计量学报, 2019, 40(2): 252-258.
Liu B, Zhang C R, Sun C, et al. Application of Multi-Population Genetic Algorithms in Prediction of Secondary Air Temperature of Grate Cooler[J]. Acta Metrologica Sinica, 2019, 40(2): 252-258.
[14]刘浩然, 孙美婷, 李雷, 等. 基于蚁群节点寻优的贝叶斯网络结构算法研究[J]. 仪器仪表学报, 2017, 38(1): 143-150.
Liu H R, Sun M T, Li L, et al. Research on Bayesian Network Structure Algorithms Based on Ant Colony Node Optimization[J]. Chinese Journal of Scientific Instrument, 2017, 38(1):
143-150.
[15]姜瑞, 陈晓怀, 王汉斌, 等. 基于贝叶斯信息融合
测量不确定度评定与实时更新[J]. 计量学报,
2017, 38(1): 123-126.
Xiang R, Chen X H, Wang H B, et al. Evaluation and Real-time Updating of Measurement Uncertainty Based on Bayesian Information Fusion[J]. Acta Metrologica Sinica, 2017, 38(1):
123-126.
[16]Toan Nguyen. An Analysis of East Asian Currency Area: Bayesian Dynamic Factor Model Approach[J]. International Review of Applied Economics, 2010, 24(1): 103-117.
[17]Forbes J, Huang T, Kanazawa K, et al. The Watermobile: Towards a Bayesian Automated taxi [J]. Artificial Intelligence, 1995, 8(11): 102-118
[18]Trabelsi G. New Structure Learning Algorithms and Evaluation Methods for Large Dynamic Bayesian Networks[J]. Réf, 2013. 12(3): 20-25
[19]Mez J, Mateo J L, Puerta J. Learning Bayesian Networks by Hill Climbing: Efficient Methods based on Progressive Restriction of the Neighborhood[J]. Data Mining and Knowledge Discovery, 2011, 22(1): 106-148
[20]李国梁. 贝叶斯网络结构学习的混合优化方法研究[D]. 西安, 西北工业大学, 2015.
[21]刘浩然,常金凤,庞娜娜, 等. 基于改进混合遗传细菌觅食算法的贝叶斯结构学习算法[J]. 计量学报,
2020, 41(9): 1122-1126.
Liu H R, Chang J F, Pang N N, et al. Bayesian Network Structure Learning Based on Improved Hybrid
Genetic Bacterial Foraging Algorithm[J]. Acta Metrologica Sinica, 2020, 41(9): 1122-1126. |
|
|
|