|
|
Research on Video Measurement of Dry Beach Length of Tailings Pond Based on Mask R-CNN Algorithm |
YANG Jun,SUN Ye-qing,SHENTU Nan-ying,LI Qing |
National and Local Joint Engineering Laboratory of Disaster Monitoring Technology and Instruments, China Jiliang University, Hangzhou, Zhejiang 310018, China |
|
|
Abstract The length of dry beach is an important parameter for the safety and stability of the whole tailings dam. In order to accurately measure the length of dry beach in real time, an efficient, intelligent and accurate online monitoring method based on Mask R-CNN algorithm(instance segmentation algorithm) was proposed. The method is divided into four parts: (1) Installing monitoring cameras on both sides of the tailings dam; (2) Training a network model to recognize the water line and output the coordinates of the water line based on the Mask R-CNN algorithm; (3) Regression analysis was carried out between the contour coordinates of water line and the actual length of dry beach, and the relationship formula of measurement algorithm was fitted; (4) The length of dry beach can be measured in real time by inputting the coordinates of water line into the above formula. The results show that the model can accurately measure the length of dry beach, and is suitable for the conditions of insufficient light, blurred images, rain and snow.
|
Received: 10 June 2019
Published: 08 December 2020
|
|
|
|
|
[1]金辰. 本溪市某尾矿坝稳定性分析[D]. 长春: 吉林大学, 2017.
[2]张鑫. 优化算法在图像处理技术中的研究[D]. 太原: 中北大学, 2018.
[3]李闫世洋. 基于计算机视觉的动态手势识别方法[D]. 南京: 南京邮电大学, 2018.
[4]黄青松. 基于图像分割的尾矿坝干滩长度测量系统研究[D]. 杭州: 中国计量大学, 2016.
[5]胡军, 刘泽北, 胡珊. 基于视觉测量的尾矿库干滩长度监测[J]. 工业安全与环保, 2014,(11): 1-4.
Hu J, Liu Z B, Hu S. Monitoring of dry beach length of tailings pond based on visual measurement [J]. Industrial safety and environmental protection, 2014,(11): 1-4.
[6]邢雪亮,甘文波,蒋朝根. 基于机器视觉的航空铆钉尺寸检测技术[J]. 计量学报, 2020, 41(5): 518-523.
Xing X L, Gan W B, Jiang C G. Technology of Size Detection of Air Rivets Based on Machine Vision[J]. Acta Metrologica Sinica, 2020, 41(5): 518-523.
[7]程淑红, 张典范, 张仕军, 等. 基于CNN卷积神经网络的生物式水质监测方法[J]. 计量学报, 2019, 40(4): 721-727.
Cheng S H, Zhang D F, Zhang S J, et al. Biological water quality monitoring method based on CNN convolutional neural network [J]. Acta Metrologica Sinica, 2019, 40(4): 721-727.
[8]He K M, Gkioxari G, Dollár P, et al.Mask R-CNN[R]. Ithaca, NY: Cornell University, 2017.
[9]Ren S , He K M, Girshick R , et al. Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2017, 39(6):1137-1149.
[10]Girshick R. Fast R-CNN[C]//IEEE. International Conference on Computer Vision. Santiago, 2015: 1440-1448.
[11]Xu M Y, Ma M Y. Real-time detection of moving human target under indoor environment based on video[C]//Proceedings of Fifth International Symposium on Test Automation and Instrumentation. Beijing, 2014: 236-238.
[12]张浩. 基于深度学习的皮肤疾病识别方法研究[D]. 杭州: 浙江大学, 2019.
[13]朱婉仪, 穆平安, 戴曙光. 基于图像匹配的透明车灯部件检测[J]. 计量学报, 2018, 39(3): 353-358.
Zhu W Y, Mu P A, Dai S G. Detection of Transparent Lamp Parts Based on Image Matching[J]. Acta Metrologica Sinica, 2018, 39(3): 353-358.
[14]罗聪. 基于人脸检测YOLO算法的专用型卷积神经网络推理加速器的研究与设计[D]. 广州: 华南理工大学, 2018.
[15]董怡. 基于边缘信息的RGB-D图像分割算法研究[D]. 南京: 南京邮电大学, 2018. |
|
|
|