|
|
Research on Key Techniques of Moving Target Detection and Recognition Based on Image Sequence |
XUE Zhen,YU Lian-zhi,HU Chan-juan |
School of Optical-Electrical and Computer Engineering, University of Shanghai forScience and Technology, Shanghai 200093, China |
|
|
Abstract To improve the recognition of moving target detection, the pros and cons of various moving target detection algorithms were analyzed, the global adaptive frame difference method and the codebook model based background subtraction method was proposed to detect moving targets simultaneously for the same target.The method used the masks of moving target and then analyzed them by rectangles, so that the pictures in the rectangle can be extracted out.Next, adjust the rectangle and extract the HOG features of the image, classify through trained SVM.In the training process, the bootstrap method is applied to optimize the trainer for difficult situations.Experiments show that compared with the traditional HOG+SVM multiscale detection algorithm, this method can increase the speed and accuracy by about 20%, and it can be used as a reference method for moving target detection and recognition.
|
Received: 15 April 2019
Published: 08 December 2020
|
|
|
|
|
[1]程全, 樊宇. 分块投影匹配的运动目标检测方法[J]. 红外与激光工程, 2018, 47(10): 1-4.
Cheng Q, Fan Y. Moving Target Detection Method Based on Block Projection Matching[J]. Infrared and Laser Engineering, 2018, 47(10): 1-4.
[2]Jain R. Difference and Accumulative Difference Pictures in Dynamic Scene Analysis[J]. Image and Vision Computing, 1984, 2(2): 99-108.
[3]崔杰, 胡长青, 徐海东. 基于帧差法的多波束前视声纳运动目标检测[J]. 仪器仪表学报, 2018, 39(2): 170-175.
Cui J, Hu C Q, Xu H D. Moving Target Detection for Multi-Beam Forward-Looking Sonar Based on Frame-Difference Method[J]. Chinese Journal of Scientific Instrument, 2018, 39(2): 170-175.
[4]王华, 李艾华, 崔智高,等. 复杂背景下改进视觉背景的前景检测算法[J]. 计算机应用研究, 2017, 34(4): 1261-1264.
Wang H, Li A H, Cui Z G, et al. Foreground Detection Algorithm Based on Improved Visual Background Extrac-tor in Complex Background[J]. Application Research of Computers. 2017, 34(4): 1261-1264.
[5]Goh T Y, Basah S N, Yazid H, et al. Performance anal-ysis of image thresholding: Otsu technique[J]. Measurement, 2018, 114(10): 298-307.
[6]孙亚萍. 灰度图像的直方图均衡化处理分析[J]. 河南科技, 2015, (6): 20-22.
[7]刘仲民, 何胜皎. 基于背景减除法的视频序列运动目标检测[J]. 计算机应用, 2017, 37(6): 1777-1781.
Liu Z M, He S J. Moving Object Detection Based on Background Subtraction for Video Sequence[J]. Journal of Computer Applications, 2017, 37(6): 1777-1781.
[8]程淑红, 高许. 基于多特征提取和SVM参数优化的车型识别[J]. 计量学报, 2018, 39(3): 348-352.
Cheng S H, Gao X. Vehicle Recognition Based on Muti-feature Extraction and SVM Parameter Optimization[J]. Acta Metrologica Sinica, 2018, 39(3): 348-352.
[9]Kim K, Chalidabhongse T H, Harwood D, et al. Background modeling and subtraction by codebook construction[C]//2004 International Conference on Image Processing. Singapore, 2004.
[10]苏剑臣, 李策, 杨峰. 基于边缘帧差和高斯混合模型的行人目标检测[J]. 计算机应用研究, 2018, 35(4): 1246-1249.
Su J C, Li C, Yang F. Detection Method for Pedestrian Target Based on Gaussian Mixture Model and Edge Frame Diffidence[J]. Application Research of Computers, 2018, 35(4): 1246-1249.
[11]张立国, 李晓松. 基于单目视觉的四旋翼飞行器目标跟踪算法研究[J]. 计量学报, 2018, 39(3): 342-374.
Zhang L G,Li X S.Research on Target Tracking Algorithm of the Quadrotor Aircraft Based on Monocular Vision[J]. Acta Metrologica Sinica,2018,39(3):342-374.
[12]孙小权, 邹丽英. 基于SVM的图像识别在零件分拣系统中的应用[J]. 机电工程, 2018, 35(12): 1354-1356.
Sun X Q, Zou L Y. Application of Image Recognition Based on SVM in Part Sorting System[J]. Journal of Mechanical & Electrical Engineering, 2018, 35(12): 1354-1356.
[13]金立军, 闫书佳, 刘源. 基于类haar特征与级联AdaBoost算法的防震锤识别[J]. 系统仿真学报, 2012, 11(9): 1806-1809.
Jin L J, Yan S J, Liu Y. Vibration Damper Recognition Based on Haar-Like Features and Cascade Adaboost Classifier[J]. Journal of System Simulation, 2012, 11(9): 1806-1809.
[14]王金甲,周雅倩,郝智. 基于注意力模型的多传感器人类活动识别[J]. 计量学报, 2019, 40(6): 958-969.
Wang J J, Zhou Y Q, Hao Z. Multi-sensor Human Activity Recognition Based on Attention Model[J]. Acta Metrologica Sinica, 2019, 40(6): 958-969.
[15]田仙仙, 鲍泓, 徐成. 一种改进HOG特征的行人检测算法[J]. 计算机科学, 2014, 41(9): 320-324.
Tian X X, Bao H, Xu C. Improved HOG Algorithm of Pedestrian Detection[J]. Computer Science, 2014, 41(9): 320-324.
[16]王同, 彭祺, 屠礼芬. 基于OpenCV的运动目标检测软件实现[J]. 软件导刊, 2015, 14(12): 132-133.
Wang T, Peng Q, Tu L F. Implementation of Moving Target Detection Software Based on OpenCV[J]. Software Guide, 2015, 14(12): 132-133.
[17]周建新, 吴建军, 薛军强. 适用于密集人群目标检测的多尺度检测方法[J]. 系统仿真学报, 2016, 28(10): 2603-2509.
Zhou J X, Wu J J, Xue J Q. Multi-scale Detection Method SuitableFor Target Detection in Dense Population[J]. Journal of System Simulation, 2016, 28(10): 2603-2509.
[18]倪豪, 郑慧峰, 王月兵. 基于自动种子区域生长的超声B图像缺陷分割方法[J]. 计量学报, 2018, 39(6): 878-883.
Ni H, Zheng H F, Wang Y B. Ultrasonic B Image Defect Segmentation Method Based on Automatic Seed Region Growth[J]. Acta Metrologica Sinica, 2018, 39(6): 878-883. |
|
|
|