|
|
Density Measurement of Monocrystalline Silicon Based on Compression Heat Effect |
ZHONG Jia-dong1,2,SUN Bin1,ZHAO Yu-xiao1,MA Xin-yu1,2,ZHANG Jing-yue2,ZHANG Dian-long2 |
1. China Jiliang University, Hangzhou, Zhejiang 310000, China
2.National Institute of Metrology, Beijing 100029, China |
|
|
Abstract In order to explore the influence of compression heat effect on the temperature of DSL-2329 liquid, the ratio of constant temperature compression coefficient to constant entropy compression coefficient of DSL-2329 liquid can be calculated by combining theoretical deduction with experimental results. The higher the ratio, the more sensitive the temperature of liquid to pressure. In a constant temperature liquid measuring environment of (+0.1mK), three specific suspension states of single crystal silicon sphere are realized by micro-adjustment of liquid temperature and pressure. The three states include the change of liquid density under constant temperature and constant entropy conditions respectively. The ratio of liquid isothermal compression coefficient to isentropic compression coefficient is calculated by using the pressure relationship between the three specific suspension states value. The experimental data show that the smaller the pressure change is, the closer the ratio of constant temperature compression coefficient to constant entropy compression coefficient is to the theoretical value of 0.72.
|
Received: 18 April 2019
Published: 08 December 2020
|
|
|
|
|
[1]郭立功, 刘子勇, 罗志勇, 等. 容量密度计量领域纯水密度国际研究现状[J]. 计量技术, 2012, (11): 28-30.
[2]罗志勇. 质量自然基准的研究进展及发展方向[J]. 计量学报, 2004, 25(2): 138-141.
Luo Z Y. The Progress and Development Trend of Mass Natural Standard[J]. Acta Metrologica Sinica, 2004, 25(2): 138-141.
[3]Luo Z Y,Gu Y Z,Zhang J T, et al. Interferometric Measurement of the Diameter of a Silicon Sphere With a Mechanical Scanning Method[J]. IEEE Transactions on Instrumentation & Measurement, 2010, 59(11): 2991-2996.
[4]罗志勇,王金涛,刘翔,等. 阿伏加德罗常数测量与千克重新定义[J]. 计量学报, 2018, 39(3): 377-380.
Luo Z Y, Wang J T, Liu X, et al. Avogadro Constant Determination and Kilogram Redefinition[J]. Acta Metrologica Sinica, 2018, 39(3): 377-380.
[5]顾英姿, 陈朝晖, 许常红, 等. 液体静力称量法液体密度测量及其不确定度评定[J]. 计量技术, 2006, (6): 8-11.
[6]顾英姿, 罗志勇, 陈朝晖, 等. 液体表面张力对静力称量法固体密度测量的影响[J]. 计量学报, 2013, 34(3): 247-250.
Gu Y Z, Luo Z Y, Chen C H, et al. Study on Influence of Liquid Surface Tension on Solid Density Measurement by Hydrostatic Weighing[J]. Acta Metrologica Sinica, 2013, 34(3): 247-250.
[7]Waseda A, Fujii K. Density comparison measurement of silicon by pressure of flotation method[J]. IEEE Transactions on Instrumentation & Measurement, 2001, 50(2): 604-607.
[8]罗志勇, 杨丽峰, 顾英姿, 等. 阿伏加德罗常数测量中单晶硅密度的绝对测量[J]. 计量学报, 2008, 29(3): 211-215.
Luo Z Y,Yang L F,Gu Y Z,et al. The Absolute Measurement of Density of Silicon Crystals for Determing Avogadro Constant[J]. Acta Metrologica Sinica, 2008, 29(3): 211-215.
[8]刘子勇, 王金涛, 许常红, 等. 基于压浮原理的单晶硅球密度比较测量方法研究[J]. 计量学报, 2013, 34(2): 97-100.
Liu Z Y, Wang J T, Xu C H, et al. Research on Comparison Measurement of Single-crystal Silicon Sphere Density Based on Pressure Floatation Method[J]. Acta Metrologica Sinica, 2013, 34(2): 97-100. |
|
|
|