|
|
Development of a High-performance Amplifier for Johnson Noise Thermometer |
HAN Qi-na1,ZHOU Kun-li1,QU Ji-feng1,DONG Xian-ying2,ZHANG Jian-qiang3,LI Jing-hui1,WANG Miao-er1 |
1. National Institute of Metrology, Beijing 100029, China
2. Chengdu Aircraft Industrial (Group) Co. Ltd, Chengdu,Sichuan 610091, China
3. Shandong Computer Science Center, Jinan, Shandong 250353, China |
|
|
Abstract A amplifier with low-noise, low-distortion, and high common-mode rejection ratio (CMRR) is critical for the noise thermometer. A high-performance amplifier for noise thermometers composed of three stages of preamplification, instrumentation amplification and buffer amplification is designed. An ultra-low noise junction-field-effect-transistor (JFET) pair IF9030 is used as the input of the pre-differential amplifier stage. An instrument is developed to automatically measure the transfer characteristics of the JFET pair, so as to achieve a better matching of the characteristics. Cross-correlation technologies are performed to suppress the uncorrelated noise in the circuit, thus the nonlinear distortions under the background noise could be accurately measured. The results show that the background noise of the amplifier is about 1.2nV/Hz1/2. The CMRR within 100kHz is higher than 90dB, and in the 100kHz to 1MHz, the CMRR decreases to lower values with the frequency increasing. fortunately, it is still larger than 70dB even at frequencies close to 1MHz. When the amplifier is excited by a two-tone signal with a frequency of 400kHz, 401kHz and an effective amplitude of 8μV, the second-order intermodulation distortion and the second-order harmonic distortion are 79dB and 85dB lower than the fundamental, respectively.
|
Received: 06 January 2020
Published: 10 October 2020
|
|
|
|
|
[1]Mills I M, Mohr P J, Quinn T J, et al. Redefinition of the kilogram, ampere, kelvin and mole: a proposed approach to implementing CIPM recommendation [J]. Metrologia, 2006, 43(3): 227-246.
[2]Qu J F, Benz S P, Coakley K, et al. An improved electronic determination of the Boltzmann constant by Johnson noise thermometry [J]. Metrologia, 2015, 54(4): 549-558.
[3]Preston T H. The international temperature scale of 1990 (ITS-90) [J]. Metrologia, 1990, 27(1): 3-10.
[4]Tew W, Labenski J, Nam S, et al. Johnson noise thermometry near the Zinc freezing point using resistance-based scaling [J]. International Journal of Thermophysics, 2007, 28(2): 629-645.
[5]Labenski J, Tew W, Nam S, et al. A determination of the ratio of the Zinc freezing point to the Tin freezing point by noise thermometry [J]. International Journal of Thermophysics, 2008, 29(1): 1-17.
[6]周贞宇, 屈继峰, 周琨荔, 等. 基于噪声温度计的铟凝固点热力学温度研究[J]. 计量学报, 2019, 40(5): 804-809.
Zhou Z Y, Qu J F, Zhou K L, et al. Thermodynamic temperature measurement of the Indium freezing point with Johnson noise thermometry[J]. Acta Metrologica Sinica, 2019, 40(5): 804-809.
[7]Bramley P, Cruickshank D, Pearce J. The development of a practical, drift-free, Johnson-noise thermometer for industrial applications [J]. International Journal of Thermophysics, 2017, 38(2): 1-15.
[8]Brixy H V, Kakuta T. Noise thermometer [R]. JAERI-Review 96-003, 1996.
[9]White D R, Galleano R, Actis A et al. The status of Johnson noise thermometry [J]. Metrologia, 1996, 33(4): 325-335.
[10]Britton Jr C L, Bull N D, Roberts M. Amplifiers module prototype for the Johnson noise thermometry system[R]. ORNL/TM-2013/192, 2013.
[11]付云丰, 屈继峰, 张建强, 等. 噪声温度计中新型数字相关器设计 [J]. 计量学报, 2014, 35(4): 335-338.
Fu Y F, Qu J F, Zhang J Q, et al. A new design of digital correlator for Johnson noise thermometry [J]. Acta Metrologica Sinica, 2014, 35(4): 335-338.
[12]Callegaro L, Pisani M, Ortolano M. Systematic errors in
the correlation method for Johnson noise thermometry: residual correlations due to amplifiers [J]. Metrologia, 2010, 47(3): 272-278.
[13]Friis H T. A note on a simple transmission formula [J]. Proceedings of the IRE, 1946, 34(5): 254-256.
[14]高晋占. 微弱信号检测 [M]. 北京: 清华大学出版社, 2004.
[15]White D R, Zimmermann E. Preamplifier limitations on the accuracy of Johnson noise thermometers [J]. Metrologia, 2000, 37(1): 11-22.
[16]Benz S P, Burroughs C J, Dresselhaus P D. Low harmonic distortion in a Josephson arbitrary waveform synthesizer [J]. Applied Physics Letters, 2000, 77(7): 1014-1016.
[17]周琨荔, 屈继峰, 张钟华, 等. 交流量子电压标准综述[J]. 计量学报, 2017, 38(4): 486-491.
Zhou K L, Qu J F, Zhang Z H, et al. The status of AC quantum voltage standards [J]. Acta Metrologica Sinica, 2017, 38(4): 486-491.
[18]张金涛, 薛寿清. 噪声法测量热力学温度研究[J]. 计量学报, 2007, 28(z1): 11-14.
Zhang J T, Xue S Q. Johnson noise thermometry on the melting point of gallium [J]. Acta Metrologica Sinica, 2007, 28(z1): 11-14.
[19]张建强. 量子电压标定的噪声温度计系统完善[D]. 杭州: 中国计量学院, 2012.
[20]Jose C P, Nuno B C. Intermodulation distortion in microwave and wireless circuits [M]. London: Artech House Publishers, 2003.
[21]许勋, 周琨荔, 徐志鹏, 等. 量子电压标定的叠加型噪声温度计研究[J]. 计量学报, 2020, 41(1): 32-36.
Xu X, Zhou K L, Xu Z P, et al. Research on Quantum-voltage-calibrated Superposition Thermometry[J]. Acta Metrologica Sinica, 2020, 41(1): 32-36. |
|
|
|