|
|
R&D and Performance Evaluation of Reflective Sagnac Interferometer-type Fiber Broadband High Current Measuring Instrument |
XIE Xiao-jun,ZHU Cai-yi,LI Qing-xian,LI Hua,LUO Ying |
Hunan Institute of Metrology, Changsha, Hunan 410014, China |
|
|
Abstract To deal with the difficulties of quantity transfer and on-line high current calibration for large-scale electric welding and electroplating, a prototype of reflective Sagnac fiber-optic current transformer (RS-FOCT), named fiber broadband high current measuring instrument, was developed and proposed. The prototype utilized the techniques including the linear birefringence suppression, the retarder temperature self-compensation, the closed-loop digital signal detection, and meanwhile implemented optimization design like flexible fiber sensing coil. Several key technical features were tested. The test results showed that the measurement accuracy of the developed prototype is superior to ±0.2% under the experimental condition, the scale factor errors under the changes caused by the temperature, vibration and magnetic field variation, are all less than ±0.2%. Frequency response at 1kHz is attenuated by 0.14%, and the -3dB bandwidth is wider than 10kHz. The accuracy reliability and serviceability in high current online calibration of the measuring instrument were verified. The model’s extended uncertainty of measurement error is 0.10%, the accuracy grade of the measuring instrument is in accordance with 0.2 grade.
|
Received: 14 October 2019
Published: 13 August 2020
|
|
|
|
|
296-300.
Wang S Q, Zhang J Q, Cui S Y, et al. Pulse High Current Calibration System[J]. Acta Metrologica Sinica, 2020, 41(3): 296-300.
[2]张建永, 胡耀元, 贾云涛, 等. 脉冲电流测量方法分析与比较[J]. 计测技术, 2015, 35(3): 10-13.
Zhang J Y, Hu Y Y, Jia Y T, et al. Analysis and comparison of pulse current measurement[J]. Metrology & Measurement Technology, 2015, 35(3): 10-13.
[3]张士文.罗氏线圈若干问题研究[D].合肥:合肥工业大学,2015.
[4]焦斌亮, 郑绳楦. 用于电力系统的光学电流互感器技术进展[J]. 应用光学, 2004, 25(6): 47-53.
Jiao B L, Zheng S X. Process in optical current transducer technique for power systems[J]. Applied Optics, 2004, 25(6): 47-53.
[5]Bohnert K, Gabus P, Kostovic J, et al. Optical fiber sensors for the electric power industry[J]. Optics and Lasers in Engineering, 2005, 43(3): 511-526.
[6]Bohnert K, Gabus P, Brndle H, et al. Fiber-optic dc current sensor for the electro-winning industry[C]//SPIE. 17th International Conference on Optical Fiber Sensors. Burges, Belgium, 2005:210-213.
[7]Bohnert K, Brndle H, Brunzel M G, et al. Highly accurate fiber-optic DC current for the electro winning Industry[J]. IEEE Transactions on Industry Applications, 2007, 43(1): 180-187.
[8]Blake J, Tantaswadi P, Carvalho R T D. In-line sagnac interferometer current sensor[J]. IEEE Transactions on Power Delivery, 1996, 11(1): 116-121.
[9]宋璇坤, 闫培丽, 肖智宏, 等. 全光纤电流互感器技术应用评述[J]. 电力系统保护与控制, 2016, 44(8): 149-154.
Song X K, Zhang P L, Xiao Z H, et al. Comment on the technology and application of fiber optic current transformer(FOCT)[J]. Power System Protection and Control, 2016, 44(8): 149-154.
[10]王巍, 吴维宁, 王学峰. 调制器调制系数对光纤电流互感器测量精度的影响[J]. 电力系统自动化, 2012, 36(24): 64-68.
Wang W, Wu W N, Wang X F. Effect of modulator modulation coefficient on measuring accurary of fiber optic current sensor[J]. Automation of Electric Power Systems, 2012, 36(24): 64-68.
[11]滕峰成,张昊阳,程安迪,等. 基于非线性遗传算法的DTS传感模型的参数辨识与优化[J]. 计量学报, 2019, 40(4): 610-617.
Teng F C, Zhang H Y, Cheng A D, et al. Parameter Identification and Optimization of the DTS Sensing Model Based on the Nonlinear Genetic Algorithm[J]. Acta Metrologica Sinica, 2019, 40(4): 610-617.
[12]郭茂森,王宇,张建国,等. 最小控制递归平均算法对光纤声音传感系统的降噪作用[J]. 计量学报, 2019, 40(5): 880-886.
Guo M S, Wang Y, Zhang J G, et al. oise Reduction Effect Of Minimum Control Recursive Average Algorithm On Optical Fiber Acoustic Sensor System [J]. Acta Metrologica Sinica, 2019, 40(5): 880-886.
[13]Short S X, Tantaswadi P. An experimental study of acoustic vibration effects in optical fiber current sensors [J]. IEEE Transactions on Power Delivery, 1996, 11(4): 1702-1706.
[14]Bohnert K, Gabus P, Nehring J, et al. Temperature and vibration insensitive fiber-optic current sensor[J]. Lightwave Technology, 2002, 20(2): 267-276.
[15]黄建华, 王佳. 光学电流互感器的关键技术[J]. 电力自动化设备, 2009, 29(12): 94-97.
Huang J H, Wang J. Key technology of optical current transformer[J]. Electric Power Automation Equipment, 2009, 29(12): 94-97.
[16]Nicati P A, Robert P. Stabilized current sensor using Sagnac interferometer[J]. Journal of Physics E: Scientific Instruments, 1988, 21(8): 791-796.
[17]王政平, 王和平. 光纤电流传感器研究新进展[J]. 激光与光电子学进展, 1999, 36(7): 1-6.
Wang Z P, Wang H P. Progress in optic-fiber current sensors[J]. Laser & Optoelectronics Progress, 1999, 36(7): 1-6.
[18]李卓岩, 孟义朝, 郝祥雨. 旋转高双折射全光纤型电流互感器[J]. 激光与光电子学进展, 2017, 54(2): 88-96.
Li Z Y, Meng Y C, Hao X Y. Spun high birefringence all-fiber current transformers[J]. Laser & Optoelectronics Progress, 2017, 54(2): 88-96.
[19]李岩松, 李霞, 刘君. 全光纤电流互感器传感机理建模分析[J]. 中国电机工程学报, 2016, 36(23): 6560-6569.
Li Y S, Li X, Liu J. Mechanism analysis and modeling on the sensing of fiber-optical current transformers [J]. Proceedings of the CSEE, 2016, 36(23): 6560-6569.
[20]王夏霄, 王野, 李传生, 等. 光纤1/4波片相位延迟温度特性测量方法及实验研究[J]. 中国激光, 2013, 40(12): 150-153.
Wang X X, Wang Y, Li C S, et al. Measurement method and experimental research of the temperature dependence of the phase delay of quarter-wave plates[J]. Chinese J Lasers, 2013, 40(12): 150-153.
[21]李传生, 张朝阳, 孙海红, 等. 保偏延迟光纤环偏振串音对光纤电流互感器的影响[J]. 中国激光, 2014, 41(11): 160-165.
Li C S, Zhang C Y, Sun H H, et al. Effect of polarization crosstalk of polarization-maintaining delay optical fiber coil on the fiber-optic current sensor[J]. Chinese J Lasers, 2014, 41(11): 160-165.
[22]李传生, 邵海明, 赵伟, 等. 直流光纤电流互感器宽频测量特性[J]. 电力系统自动化, 2017, 41(20): 151-156.
Li C S, Shao H M, Zhao W, et al. Wide-frequency measurement characteristics of DC fiber-optic current transformer[J]. Automation of Electric Power Systems, 2017, 41(20): 151-156.
[23]Bohnert K, Gabus P. Fiber-optic current sensor for electrowinning of metals[J]. Journal of Lightwave Technology, 2007, 25(11): 3602-3609.
[24]Sasaki K, Takahashi M. Temperature-insensitive Sagna-type optical current transformer [J]. Journal of Lightwave Technology, 2015, 33(12): 2463-2467.
[25]徐晓蕾, 赵睿文. 光学电流互感器在110kV蒙自变电站中的应用[J]. 华东电力, 2010, 38(4): 516-519.
Xu X L, Zhao R W. Application of optical current sensor in 110kV Mengzi substation[J]. East China Electric Power, 2010, 38(4): 516-519.
[26]庞红梅, 李淮海, 张志鑫, 等. 110kV智能变电站技术研究状况[J]. 电力系统保护与控制, 2010, 38(6): 146-150.
Pang H M, Li H H, Zhang Z X, et al. Research situation of 110kV smart substation technology [J]. Power System Protection and Control, 2010, 38(6): 146-150.
[27]张朝阳, 张春熹, 王夏霄, 等. 数字闭环全光纤电流互感器信号处理方法[J]. 中国电机工程学报, 2009, 29(30): 42-46.
Zhang C Y, Zhang C X, Wang X X, et al. Signal processing system for digital closed-loop fiber optic current sensor[J]. Proceedings of the CSEE, 2009, 29(30): 42-46.
[28]李传生, 邵海明, 赵伟, 等. 超大电流量值传递用光纤电流传感技术[J]. 红外与激光工程, 2017, 46(7): 122-128.
Li C S, Shao H M, Zhao W, et al. Fiber-optic current sensing technique utilized for ultra-high current value transfer [J]. Infrared and Laser Engineering, 2017, 46(7): 122-128.
[29]李传生, 张春熹, 王夏霄, 等. Sagnac型光纤电流互感器变比温度误差分析与补偿[J]. 电力自动化设备, 2012, 32(11): 102-106.
Li C S, Zhang C X, Wang X X, et al. Analysis and compensation of ratio temperature error for Sagnac fiber-optic current transformer [J]. Electric Power Automation Equipment, 2012, 32(11): 102-106.
[30]康崇, 吕文磊, 欧阳鸿, 等. 光学电流互感器中线性双折射与法拉第效应的分离检测[J]. 光学学报, 2008, 28(1): 163-168.
Kang C, Lv W L, Ouyang H, et al. The separate detection of linear birefringence and faraday effect in optical current transformer [J]. Acta Optica Sinica, 2008, 28(1): 163-168.
[31]李传生, 张春熹, 王夏霄, 等. 反射式Sagnac型光纤电流互感器的关键技术[J]. 电力系统自动化, 2013, 37(12): 104-108.
Li C S, Zhang C X, Wang X X, et al. Key techniques of reflective Sagnac interferometer-type fiber optic current transformers [J]. Automation of Electric Power Systems, 2013, 37(12): 104-108. |
|
|
|