|
|
Study on Approaching Characteristics between the Tip and the Surface of Atomic Force Microscope Based on Tuning Fork Probe |
SHI Hui1,2,GAO Si-tian2,HUANG Lu2,SHEN Xiao-yan1 |
1. College of Metrology and Measurement Engineering, China Jiliang University, Hangzhou, Zhejiang 310018, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract In the study of atomic force microscopy, the micro-force detection in the approaching process between the tip and the sample is the basis for accurate measurement of the sample morphology. A dynamic equation was established based on the characteristics of tuning fork probe and Simulink software was used to simulate the amplitude response. Experimental device of approaching curve and program of controlling displacement system and acquiring data from lock-in amplifier were designed independently. In the AM mode, the curves under different excitation voltages were obtained. Under the excitation of 25, 50, 75 and 100mV, the working distance of the probe is 4.12,5.1,5.95,7.6nm respectively, and the forms are in conformity with the simulation.
|
Received: 12 July 2018
Published: 14 May 2020
|
|
|
|
|
[1]陈鹏, 程仉君, 袁秉凯, 等. 基于qPlus技术的扫描探针显微学研究进展[J]. 科学通报, 2013, 58(24): 2360-2366.
Chen P, Chen J J, Yuan B K, et al. Research progress of qPlus scanning probe technique[J]. Chinese Science Bulletin, 2013, 58(24): 2360-2366.
[2]杨文军, 胡迟, 刘晓军. 一种可溯源原子力探针显微镜[J]. 计量学报, 2019, 40(2): 183-188.
Yang W J, Hu C, Liu X J. A Traceable Atomic Force Microscope[J]. Acta Metrologica Sinica, 2019, 40(2): 183-188.
[3]朱杰, 孙润广. 原子力显微镜的基本原理及其方法学研究[J]. 科学仪器, 2005, 3(1): 22-26.
Zhu J, Sun R G. Introduction to Atomic Force Microscope and its Manipulation[J]. Life Science Instruments, 2005, 3(1): 22-26.
[4]黄强先. 压电微音叉扫描探针显微镜测头研究[J]. 仪器仪表学报, 2007, 28(1): 74-79.
Huang Q X. Research on a piezo-electrical micro-fork probe for SPM[J]. Chinese Journal of Scientific Instrument, 2007, 28(1): 74-79.
[5]刘雷华, 郭彤, 李伟, 等. 基于石英音叉探针的原子力显微镜测头开发[J]. 计量学报, 2016, 37(3):225-229.
Liu L H, Guo T, Li W, et al. Development of Atomic Force Microscopy Measuring Head Based on Quartz Tuning Fork Probe[J]. Acta Metrologica Sinica, 2016, 37(3):225-229.
[6]王志新, 高思田, 李东升, 等. 基于qPlus技术的AFM测头研究[J]. 计量学报, 2016, 37(2):113-117.
Wang Z X, Gao S T, Li D S, et al. Research of the Atomic Force Microscope Scanning Head Based on the Qplus Technology[J]. Acta Metrologica Sinica, 2016, 37(2):113-117.
[7]Garcia R, San P A. Amplitude curves and operating regimes in dynamic atomic force microscopy[J]. Ultramicroscopy, 2000, 82(1): 79-83.
[8]王艳霞, 李艳宁, 傅星, 等. 基于AFM的振幅曲线研究探针-样品间的相互作用[J]. 仪器仪表学报, 2003, 24(s1): 216-218.
Wang Y X, Li Y N, Fu X, et al. Examination of Tip-sample Interaction by Amplitude-distance Curve in Tapping Mode Atomic Force Microscopy[J]. Chinese Journal of Scientific Instrument, 2003, 24(s1): 216-218.
[9]Schmidt J U, Bergander H, Eng L M. Shear force interaction in the viscous damping regime studied at 100 pN force resolution[J]. Journal of Applied Physics, 2000, 87(6): 3108-3112.
[10]薄惠丰, 胡鸿奎, 王凤鸣, 等. 力学性能对于原子力显微镜接近曲线的影响[J]. 压电与声光, 2014,(4): 635-638.
Bo H F, Hu H K, Wang F M, et al. Effect of Mechanical Properties of Cantilever and Sample on Amplitude Modulated Approaching Curves in Atomic Force Microscopy[J]. Piezoelectrics & Acoustooptics, 2014,(4): 635-638.
[11]李喜德, 高锋利. 音叉探针的动态传感机制[EB/OL]. 北京: 中国科技论文在线 [2016-04-14]. http://www.paper.edu.cn/releasepaper/content/201604-156.
[12]Castellanos-Gomez A, Rubio-Bollinger G. Dynamics of quartz tuning fork force sensors used in scanning probe microscopy[J]. Nanotechnology, 2009, 20(21): 215502. |
|
|
|