|
|
Rolling Bearing Fault Diagnosis Based on Maximum Amplitude Variational Mode Decomposition and Root Mean Square Entropy |
MENG Zong1, YUE Jian-hui1, XING Ting-ting1,2, LI Jing1, YIN Na1 |
1.Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China
2.Tangshan Polytechnic College, Tangshan, Hebei 063000, China |
|
|
Abstract The setting of modal number in the variational mode decomposition is very important for the decomposition results, based on this, a method to obtain the optimal decomposition layer number is proposed. The method is based on amplitude characteristics of the instantaneous frequencies and determines the optimal decomposition parameter by analyzing the relationship between the maximum amplitude of each component in the variational mode decomposition process. The root mean square entropy can reflect the energy of different vibration signals and is used as the characteristic parameter of the fault. And a fault classification model is established by optimized support vector machine to realize fault patterns classification. The fault diagnosis method based on maximum amplitude variational mode decomposition and root mean square entropy is applied to the measured signal of rolling bearings. The results show that the method based on maximum amplitude variational mode decomposition and root mean square entropy can identify rolling bearing running state efficiently and realize rolling bearing fault diagnosis. The recognition accuracy of this method is 98.75%.
|
Received: 11 July 2018
|
|
|
|
|
1 李舜酩, 郭海东, 李殿荣, 等. 振动信号处理方法综述[J]. 仪器仪表学报, 2013, 34(8): 1907-1915. LiS M, GuoH D, LiD R, et al. Review of vibration signal processing methods[J]. Chinese Journal of Scientific Instrument, 2013, 34(8): 1907-1915.
2 孟宗,张圆圆,周明军,基于关联维数和线段聚类的滚动轴承故障诊断[J]. 计量学报, 2019, 40(1): 100-106. MenZ, ZhangY Y, ZhouM J, et al. Fault Diagnosis of Rolling Bearing Based on Correlation Dimension and Segment Clustering[J]. Acta Metrologica Sinica, 2019, 40(1): 100-106.
3 DragomiretskiyK, ZossoD. Variational Mode Decomposition[J]. IEEE Transactions on Signal Processing, 2014, 62(3): 531-544.
4 郑慧峰, 曹文旭, 王月兵, 等. 基于经验模态分解的聚焦超声非线性声场检测[J]. 计量学报, 2017, 38(5): 616-620. Zheng HuF, CaoW X, WangY B, et al. The Focused Ultrasound Nonlinear Acoustic Field Detection Method Based on Empirical Mode Decomposition [J]. Acta Metrologica Sinica, 2017, 38(5): 616-620.
5 孟宗, 赵东方, 李晶, 等. 基于局部均值分解多尺度模糊熵和灰色相似关联度的滚动轴承故障诊断[J]. 计量学报, 2018, 39(2): 231-236. MengZ, ZhaoD F, LiJ, et al. Rolling Bearing Fault Diagnosis Based on Local Mean Decomposition Multi-scale Fuzzy Entropy and Grey Similar Incidence[J]. Acta Metrologica Sinica, 2018, 39(2): 231-236.
6 武英杰, 刘长良, 甄成刚, 等. 基于变分模态分解的齿轮箱状态监测[J]. 机械传动, 2016, 40(1): 161-164. WuY J, LiuC L, ZHENC G, et al. Gearbox condition monitoring based on variational mode decomposition[J]. Journal of Mechanical Transmission, 2016, 40(1): 161-164.
7 付文龙, 周建中, 张勇传. 基于OVMD与SVR的水电机组振动趋势预测[J]. 振动与冲击, 2016, 35(8): 36-40. FuW L, ZhouJ Z, ZhangY C. Vibration trend prediction of hydroelectric generating unit based on OVMD and SVR[J]. Journal of Vibration and Shock, 2016, 35(8): 36-40.
8 杨宇, 罗鹏, 程军圣. 广义变分模态分解及其在齿轮箱复合故障诊断中的应用[J]. 中国机械工程, 2017, 28(9): 1069-1073. YangY, LuoP, ChengJ S. GVMD and Its Applications in Composite Fault Diagnosis for Gearboxes[J]. China Mechanical Engineering, 2017, 28(9): 1069-1073.
9 何志坚,周志雄,黄向明. 基于变分模态分解的关联维数及相关向量机的刀具磨损状态监测[J]. 计量学报, 2018, 39(2): 182-186. HeZ J, ZhouZ X, HuangX M. Tool Wear State Monitoring Based on Variational Mode Decomposition and Correlation Dimension and Relevance Vector Machine[J]. Acta Metrologica Sinica, 2018, 39(2): 182-186.
10 孟宗, 季艳, 闫晓丽. 基于DEMD和模糊熵的滚动轴承故障诊断方法研究[J]. 计量学报, 2016, 37(1): 56-61. MengZ, JiY, YanX L. Rolling Bearing Fault Diagnosis Based on Differential-based Empirical Mode Decomposition and Fuzzy Entropy[J]. Acta Metrologica Sinica, 2016, 37(1): 56-61.
11 谢平, 王一凡, 江国乾, 等. 基于样本熵的风力发电机早期故障检测[J]. 计量学报, 2017, 38(5): 626-630. XieP, WangY F, JiangG Q, et al. Incipient Fault Detection of Generators in Wind Turbines Based on Sample Entropy[J]. Acta Metrologica Sinica, 2017, 38(5): 626-630.
12 丁闯, 张兵志, 冯辅周, 等. 局部均值分解和排列熵在行星齿轮箱故障诊断中的应用[J]. 振动与冲击, 2017, 36(17): 55-60. DingC, ZhangB Z, FengF Z, et al. Application of local mean decomposition and permutation entropy in fault diagnosis of planetary gearboxes[J]. Journal of Vibration and Shock, 2017, 36(17): 55-60.
13 SunJ D, XiaoQ Y, WenJ T, et al. Natural gas pipeline leak aperture identification and location based on local mean decomposition analysis[J]. Measurement, 2016, 79: 147-157.
14 张淑清, 邢婷婷, 何红梅, 等. 基于VMD及广义分形维数矩阵的滚动轴承故障诊断[J]. 计量学报, 2017, 38(4): 439-443. ZhangS Q, XingT T, HeHo M, et al. Bearing Fault Diagnosis Method Based on VMD and Generalized Fractal Dimension Matrix[J]. Acta Metrologica Sinica, 2017, 38(4): 439-443. |
|
|
|