|
|
Design and Development of Vacuum Mercury Fixed PointBlackbody Radiation Source |
LI Kai1,2, HAO Xiao-peng2, SONG Jian2, SUN Jian-ping2, HU Chao-yun2, LIU Yang2,3, HU You-hua1,2, YANG Yan-long1,2 |
1.College of Applied Nuclear Technology and Automation Engineering,Chengdu University of Technology, Chengdu, Sichuan 610059,China
2.National Institute of Metrology,Beijing 100029,China
3.College of Science, Xian Polytechnic University, Xian, Shaanxi 710048, China |
|
|
Abstract The structure, working principle, performance test results and uncertainty analysis of the vacuum mercury fixed point blackbody radiation source developed by NIM, China, were introduced. The perfusion metal of the vacuum mercury fixed point blackbody was high purity mercury with a purity of 99.9999%. The opening diameter of the blackbody cavity is 25 mm, the inner diameter of the cavity is 28 mm, the depth is 260mm, and the surface is coated with high emissivity coating from NEXTEL 811-21. The Monte Carlo calculation method was used to calculate the blackbody emissivity at the wavelength of 8~14μm. The emissivity is higher than 0.9999. In the vacuum environment, the main technical indicators such as the temperature curve and repeatability of the temperature of the mercury fixed point blackbody were tested. The results show that the temperature stability of the vacuum mercury fixed point blackbody is better than 2mK, and the repeatability is better than 1mK. The uncertainty source of the vacuum mercury fixed point blackbody is analyzed, the synthetic standard uncertainty is better than 16mK.
|
Received: 29 October 2019
|
|
|
|
|
1 郝小鹏, 宋健, 孙建平, 等. 风云卫星红外遥感亮度温度国家计量标准研究[J].光学精密工程, 2015, 23(7): 1845-1851. HaoX P, SongJ, SunJ P, et al. Vacuum radiance temperature national standard facility for infrared remote sensors of Chinese Fengyun meteorological satellites [J]. Optics and Precision Engineering, 2015, 23(7): 1845-1851.
2 AndersonJ G, DykemaJ A, GoodyR M, et al. Absolute, spectrally-resolved, thermal radiance: a benchmark for climate monitoring from space [J]. Journal of Quantitative Spectroscopy & Radiative Transfer, 2004, 85(3): 367-383.
3 DykemaJ A, AndersonJ G. A methodology for obtaining on-orbit SI-traceable spectral radiance measurements in the thermal infrared [J]. Metrologia, 2006, 43(6), 287-293.
4 DechS, KleinD. Challenges of Earth Observation for Global Change Monitoring [C]//Earsel Symposium. 2016.
5 宋健, 郝小鹏, 丁雷,等. 真空低背景红外高光谱亮温计量标准装置研制[J].红外与激光工程, 2019, 48(10): 1004001. SongJ, HaoX P, DingL, et al. Set up Vacuum Infrared Hyperspectral Radiance Temperature Standard Facility [J]. Infrared and Laser Engineering, 2019, 48(10): 1004001.
6 MonteC, GutschwagerB, MorozovaS P, et al. Radiation Thermometry and Emissivity Measurements Under Vacuum at the PTB [J]. International Journal of Thermophysics, 2009, 30(1): 203-219.
7 CarterA C, DatlaR U, JungT M, et al. Low-background temperature calibration of infrared blackbodies [J]. Metrologia International Journal of Scientific Metrologia, 2006, 43(2): S46-S50.
8 FowlerJ B, JohnsonB C, RiceJ P, et al. The new cryogenic vacuum chamber and black-body source for infrared calibrations at the NIST's FARCAL facility [J]. Metrologia, 1998, 35(4): 323-327.
9 MekhontsevS, KhromchenkoV, ProkhorovA, et al. Establishing a New NIST Facility for the Primary Realization of both Spectral Radiance and Reflectance in the Mid-and Far-Infrared[C]//NEWRAD, USA, Maui Hawaii, 2011, 26(7): 32-33.
10 KhromchenkoV B, MekhontsevS N, HanssenL M. Design and Evaluation of Large-Aperture Gallium Fixed-Point Blackbody[J]. International Journal of Thermophysics, 2009, 30(1): 9-19.
11 IvanovV S, LisianskyB E, MorozovaS P, et al. Medium-background radiometric facility for calibration of sources or sensors[J]. Metrologia, 2000, 37(5): 599-602.
12 许敏, 郝小鹏, 宋健, 等. 190~340K真空标准黑体辐射源研制[J]. 计量学报, 2015, 36(zl): 50-54. XuM, HaoX P, SongJ, et al. Research of Vacuum Radiance Temperature Standard Blackbody Source from 190K to 340 K[J]. Acta Metrologica Sinica, 2015, 36(zl): 50-54.
13 舒心, 郝小鹏, 宋健, 等. 100~400K真空红外亮温标准黑体辐射源研制[J]. 计量学报, 2019, 40(1): 13-19. ShuX, HaoX P, SongJ, et al. Research of 100 ~ 400 K Vacuum Infrared Radiance Temperature Standard Blackbody Source [J]. Acta Metrologica Sinica, 2019, 40(1): 13-19.
14 胡朝云,郝小鹏,宋健,等. 红外高光谱大气探测仪星载固定点黑体辐射源的研制[J].计量学报, 2019, 40(2): 232-239. HuC Y,HaoX P,SongJ, WENPing,et al. Development of Blackbody Radiation Sources at Fixed Point on Satellite of Infrared Hyperspectral Atmospheric Detector[J].Acta Metrologica Sinica, 2019, 40(2): 232-239.
15 AdibekyanA, KononogovaE, MonteC, et al. High Accuracy Emissivity Data on the Coatings Nextel 811-21, Herberts 1534, Aeroglaze Z306 and Acktar Fractal Black[J]. International Journal of Thermophysics, 2017, 38(6): 89.
16 宋健, 郝小鹏, 原遵东, 等. 基于控制环境辐射的黑体辐射源发射率测量方法研究[J]. 中国激光, 2015, 42(9): 269-275. SongJ, HaoX P, YuanZ D, et al. Blackbody Source Emissivity Measurement Method Based on Controlling Surroundings Radiation[J]. Chinese Journal of Lasers. 2015, 42(9): 269-275.
17 宋健, 郝小鹏, 原遵东, 等 . 基于控制环境辐射发射率测量方法的超黑涂层发射率特性研究[J].计量学报, 2015, 36(zl): 24-27. SongJ, HaoX P, YuanZ D, et al. Research on Ultra Black Paint Emissivity of the Emissivity Measure Method Based on Controlling Surroundings Radiation [J]. Acta Metrologica Sinica, 2015, 36(zl): 24-27.
18 SaundersP, FischerJ, SadliM, et al. Uncertainty Budgets for Calibration of Radiation Thermometers below the Silver Point[J]. International Journal of Thermophysics, 2008, 29(3): 1066-1083.
19 原遵东, 陈桂生 . 发射率影响修正近似公式及其适用性分析[J].计量技术, 2013, (4): 7-10. |
|
|
|