|
|
Sinusoidal Pressure Research Based on Dynamic Mesh Technique |
ZHANG Zhong-li1,2,XU Zi-yi1,NI Yu-shan1,WANG Can2,ZHANG Jin-ming2 |
1. Fudan University, Shanghai 200433, China
2. Shanghai Institute of Measurement and Testing Technology, Shanghai 201203, China |
|
|
Abstract Sinusoidal pressure is a typical standard signal of periodic dynamic pressure, while the sinusoidal pressure generator is the key to generate sinusoidal pressure signal. A rotating disk type of sinusoidal pressure generator has been carried out for example, to numerically simulate three-dimensional transient flow field through the dynamic mesh technique, the Reynolds-averaged Navier-Stokes equation and the Spalart Allmaras turbulence model, in order to investigate the effect of different cavity size and working frequency. The results show that, firstly in case the working frequency is constant, the dynamic amplitude ratio and the harmonic distortion degree decrease with the increase of cavity width, while the mean pressure increases. Secondly in case the cavity width is constant, as the working frequency increases, the dynamic amplitude ratio decreases, the mean stress increases, meanwhile the harmonic distortion degree decreases at first and then increases. The simulation based on dynamic mesh technique can effectively predict the various structures effects in sinusoidal pressure study.
|
Received: 13 August 2018
Published: 19 December 2019
|
|
|
|
|
[1]杨文杰, 张志杰, 李岩峰, 等. QR分解与GLS改进算法在压力传感器动态性能改善中的应用[J]. 传感技术学报, 2016, 29(11): 1698-1704.
Yang W J, Zhang Z J, Li Y F, at al. The Application of QR Decomposition and GLS Improved Algorithm in Improving the Dynamic Performance of Pressure Sensor[J]. Chinese Journal of Sensors and Actuators, 2016, 29(11): 1698-1704.
[2]杨军, 李程, 王维, 等. 双腔负压法用于激波管动态压力校准[J]. 计量学报, 2012, 33(3): 240-243.
Yang J, Li C, Wang W, et al. The Dual-chamber Negative Pressure Method for Dynamic Pressure Calibration of the Shock Tube[J]. Acta Metrologica Sinica, 2012, 33(3): 240-243.
[3]李程, 杨军, 张炳毅. 基于差动式活塞原理的正弦压力发生器[J]. 计测技术, 2014, 34(z2): 17-19.
Li C, Yang J, Zhang B Y. Sinusoidal pressure generator based on differential piston principle[J]. Metrology & Measurement Technology, 2014, 34(z2): 17-19.
[4]张力, 李程. 正弦压力标准[J]. 仪器仪表学报, 2001, 22(S2): 44-45.
Zhang L, Li C. Sinusoidal Pressure Standard[J]. Chinese Journal of Scientific Instrument, 2001, 22(S2): 44-45.
[5]陶继增, 李程, 李欣. 一种新型正弦压力发生器[J]. 计测技术, 2008, 28(3): 24-25.
Tao J Z, Li C, Li X. A Novel Sinusoidal Pressure Generator[J]. Metrology & Measurement Technology, 2008, 28(3): 24-25.
[6]姬忠礼, 席葆树, 祖佩贞. 驻波管型正弦压力发生器的特性研究[J]. 宇航计测技术, 1998, 18(2): 55-59.
Ji Z L, Xi B S, Zhu P Z. Characteristics of sinusoidal pressure generator with standing wave tube[J]. Journal of Astronautic Metrology and Measurement, 1998, 18(2): 55-59.
[7]徐淑君, 姚征. 浮子流量计流动特性的非稳态数值研究[J]. 计量学报, 2007, 28(3): 248-252.
Xu S J, Yao Z. Unsteady Numerical Simulation for Flow Characteristics of Float Meter[J]. Acta Metrologica Sinica, 2007, 28(3): 248-252.
[8]仲继泽, 徐自力. 基于动网格降阶算法的机翼颤振边界预测[J]. 振动与冲击, 2017, 36(4): 185-191.
Zhong J Z, Xu Z L. Wing flutter prediction using a reduced dynamic mesh method[J]. Journal of Vibration and Shock, 2017, 36(4): 185-191.
[9]招启军, 蒋霜, 李鹏, 等. 基于CFD方法的倾转旋翼/螺旋桨气动优化分析[J]. 空气动力学学报, 2017, 35(4): 544-553.
Zhao Q J, Jiang S, Li P, at al. Aerodynamic optimization analyses of tiltrotor/propeller based on CFD method[J]. Acta Aerodynamica Sinica, 2017, 35(4): 544-553.
[10]刘向阳, 方继明. 正弦压力发生器在传感器动态校准中的应用[J]. 传感器与微系统, 2001, 20(3): 36-38.
Liu X Y, Fang J M. An application of sine pressure generator for transducers dynamic calibration[J]. Transducer and Microsystem Technologies, 2001, 20(3): 36-38.
[11]梁志国. 正弦波拟合参数的不确定度评定[J]. 计量学报, 2018, 39(6): 888-894.
Liang Z G. The Measurement Uncertainty of Curve-fit Parameters of Sinusoidal[J]. Acta Metrologica Sinica, 2018, 39(6): 888-894.
[12]荆学东, 陈芷, 张智慧, 等. 基于FFT的舍入不确定度评估[J]. 计量学报, 2016, 37(1): 105-108.
Jing X D, Chen Z, Zhang Z H, at al. The Round-off Uncertainty Evaluation of Fast Fourier Transform[J]. Acta Metrologica Sinica, 2016, 37(1): 105-108. |
|
|
|