|
|
Research on New Method of Time Base Error Compensation for Broadband Sampling Oscilloscope |
ZHU Jiang-miao1,WANG Shi-biao1,ZHAO Ke-jia2,QIAO Meng-yuan1 |
1.Information Department, Beijing University of Technology, Beijing 100124, China
2.National Institute of Metrology, Beijing 100029, China |
|
|
Abstract Time-based errors seriously affect the accurate measurement of broadband sampling oscilloscopes, but it is extremely difficult to accurately estimate and compensate for time-base errors. For the time-base error of broadband sampling oscilloscope (including time-base distortion and jitter-induced error), the orthogonal time-regression algorithm is used to estimate the time-base error of oscilloscope for the first time. Compared with the multi-phase and multi-frequency least squares method,only to uses a set of approximately orthogonal sinusoidal signals to effectively estimate the time base error of the broadband sampling oscilloscope, and realizes the time base compensation of the measured signals. A time base error of less than 0.3ps is obtained, which significantly improves the measurement accuracy of the broadband sampling oscilloscope.
|
Received: 18 February 2019
Published: 19 December 2019
|
|
|
|
|
[1]朱江淼, 杨洁, 缪京元, 等. 基于光脉冲源的脉冲标准法中的时基漂移去除[J]. 计量技术, 2016, (6): 6-11.
Zhu J M, Yang J, Miao J Y, et al. Time-base drift removal in pulse standard method based on optical pulse source[J]. Measurement Technique, 2016, (6): 6-11.
[2]梁志国. 正弦波拟合参数的不确定度评定[J]. 计量学报, 2018, 39(6): 888-894.
Liang Z G. The Measurement Uncertainty of Curve-fit Parameters of Sinusoidal[J]. Acta Metrologica Sinica, 2018, 39(6): 888-894.
[3]林茂六, 张喆. 高速采样示波器中的时基失真及其估计[J]. 计量学报, 2004, 25(3): 266-269.
Lin M L, Zhang J. The TBD Introduction and Estimation of High-speed Sampling Oscilloscope[J]. Acta Metrologica Sinica, 2004, 25(3): 266-269.
[4]朱江淼, 李然, 缪京元, 等. 高速取样示波器时基失真数学模型的研究与仿真[J]. 北京工业大学学报, 2013, 39(12): 1810-1814.
Zhu J M, Li R, Miao J Y, et al. Time-based Distortion Correction Algorithm of High-speed Sampling Oscilloscope[J]. Journal of Beijing University of Technology, 2013, 39(12): 1810-1814.
[5]Wang C M, Hale P D, Coakley K J. Least-Squares Estimation of Time-Base Distortion of Sampling Oscilloscopes[J]. IEEE Transactions on Instrumentation and Measurement, 1999, 48(6): 1324-1332.
[6]朱江淼, 赵琳潇, 缪京元, 等. 基于光脉冲源的标准脉冲法的宽带取样示波器校准技术研究[J]. 电子学报, 2018, 46(4): 945-951.
Zhu J M, Zhao L X, Miao J Y, et al. Research on the Calibration Technology of Broadband Sampling Oscilloscope Based on the Standard Puls Source[J]. Acta Electronica Sinica, 2018, 46(4): 945-951.
[7]Liu M L, Zhao Y, Zhu J M, et al. A New Probability Density Function Feconvolution Method to Remove the Timing jitter[J]. Proceedings of the IEEE 6th Circuits and Systems Symposium: Mobile and Wireless Communication, 2004, (2), 413-416.
[8]高源, 朱江淼, 缪京元, 等. 基于EEMD算法的高速取样示波器时基抖动的去除[J]. 计量技术, 2012, (11): 15-19.
Gao Y, Zhu J M, Miao J Y, et al. Time-base Jitter Removal of High-speed Sampling Oscilloscope Based on EEMD Algorithm[J]. Metrologica Sinica, 2012, (11): 15-19.
[9]梁志国,杨仁福. 数字示波器大触发延迟时间的变频测量方法[J]. 计量学报, 2018, 39(2): 268-271.
Liang Z G, Yang R F. A Novel Multi-frequency Measurement Method for Large Trigger Delay of Digital Oscilloscopes[J]. Acta Metrologica Sinica, 2018, 39(2): 268-271.
[10]Boggs P T, Byrd R H, Schnabe R B. A Stable and Efficient Algorithm for Nonlinear Orthogonal Distance Regression[J]. Siam Journal on Scientific & Statistical Computing, 2006, 8(6): 1052-1078.
[11]Wang C M, Hale P D, Coakley K J. Least-Squares Estimation of Time-Base Distortion of Sampling Oscilloscopes[J]. IEEE Transactions on Instrumentation and Measurement, 1999, 48(6): 1324-1332.
[12]朱江淼, 王园. 高速取样示波器时基失真数据获取系统的构建[J]. 北京工业大学学报, 2014, 40(4): 509-513.
Zhu J M, Wang Y. Construction of Data Acquisition System of Time-based Distortion for High-speed Sampling Oscilloscope[J]. Journal of Beijing University of Technology, 2014, 40(4): 509-513.
[13]Zwolak J W, Boggs P T, Watson L T. Algorithm 869: ODRPACK95: A Weighted Orthogonal Distance Regression Code with Bound Constraints[J]. ACM Transactions on Mathematical Software, 2007, 33(4). https://doi.org/10.1145/1268776.1268782.
[14]Andrew R Conn, Nicholas I M Gould, Philippe L T. Trust-Region Methods[M]. Philadelphia: SIAM, 2000. |
|
|
|