[1]Ghafari S H, Golnaraghi F, Ismail F. Effect of localized faults on chaotic vibration of rolling element bearings[J]. Nonlinear Dynamics, 2008, 53(4): 287-301.
[2]Luo S, Cheng J, Zeng M, et al. An intelligent fault diagnosis model for rotating machinery based on multi-scale higher order singular spectrum analysis and GA-VPMCD[J]. Measurement, 2016, 87: 38-50.
[3]Yi C, Lü Y, Ge M, et al. Tensor Singular Spectrum Decomposition Algorithm Based on Permutation Entropy for Rolling Bearing Fault Diagnosis[J]. Entropy, 2017, 19(4): 139.
[4]杨丰源, 宋辉, 程序, 等. 基于多分辨高阶奇异谱熵分析的局部放电信号特征提取[J]. 电网技术, 2016, 40(10): 3265-3271.
Yang F Y, Song H, Cheng X, et al. Partial Feature Extraction Based on Multi-Resolution Analysis of Higher-Order Singular Spectrum Entropy[J]. Power Systerm Technolog, 2016, 40(10): 3265-3271.
[5]李巧艺, 单奇,陈跃威. 基于HHT边际谱熵-马氏距离的滚动轴承故障诊断[J]. 燕山大学学报,2016,40(6): 493-498.
Li Q Y, Shan Q, Chen Y W. Fault diagnosis of rolling bearing based on HHT marginal spectrum entropy-Mahalanobis distance[J]. Journal of Yanshan University, 2016,40(6): 493-498.
[6]王延东, 张涛, 杨春雷, 等. 基于经验模态分解/高阶统计法实现微机械陀螺降噪[J]. 光学精密工程, 2016, 24(3): 574-581.
Wang Y D, Zhang T, Yang C L, et al. MEMS gyro denoising by EMD-HOS method[J]. Optional and Precision Engineering, 2016, 24(3): 574-581.
[7]张家为. 高阶统计量的应用[J]. 中国科技信息, 2010, (24): 49-50.
Zhang J W. Application of higher order statistics[J]. China Science and Technology Information, 2010, (24): 49-50.
[8]时培明,苏晓,袁丹真,等. 基于VMD和变尺度多稳随机共振的微弱故障信号特征提取方法[J]. 计量学报, 2018,39(4):515-520.
Shi P M,Su X,Yuan D Z,et al. A New Feature Extraction Method of Weak Fault Signal Based on VMD and Re-scaling Multi-stable Stochastic Resonance[J]. Acta Metrologica Sinica,2018,39(4): 515-520.
[9]Dragomiretskiy K, Zosso D. Variational mode decomposition[J]. IEEE transactions on signal processing, 2014, 62(3): 531-544.
[10]付秀伟,高兴泉. 基于傅里叶分解与奇异值差分谱的滚动轴承故障诊断方法[J]. 计量学报, 2018, 39(5): 688-692.
Fu X W,Gao X Q. Rolling Bearing Fault Diagnosis Based on FDM and Singular Value Difference Spectrum[J]. Acta Metrologica Sinica, 2018,39(5):688-692.
[11]孟宗,邢婷婷,张圆圆,等. 基于关联维数和线段聚类的滚动轴承故障诊断[J]. 计量学报, 2019, 40(1): 100-105.
Meng Z,Xing T T,Zhang Y Y,et al. Fault Diagnosis of Rolling Bearing Based on Correlation Dimension and Segment Clustering[J]. Acta Metrologica Sinica, 2019, 40(1): 100-105.
[12]Wang Y, Markert R, Xiang J, et al. Research on variational mode decomposition and its application in detecting rub-impact fault of the rotor system[J]. Mechanical Systems & Signal Processing, 2015, 60-61: 243-251.
[13]张淑清, 邢婷婷, 何红梅, 等. 基于VMD及广义分形维数矩阵的滚动轴承故障诊断[J]. 计量学报, 2017, 38(4): 439-443.
Zhang S Q, Xing T T, He H M, et al. Bearing Fault Diagnosis Method Based on VMD and Grnrealized Fractal Dimension Matrix[J]. Acta Metrologica Sinic, 2017, 38(4): 439-443.
[14]谢平, 江国乾, 武鑫, 等. 本征时间尺度排序熵及其在滚动轴承故障诊断中的应用[J]. 燕山大学学报, 2013, 37(2): 179-183.
Xie P, Jiang G Q, Wu X, et al. Intrinsic time scale sorting entropy and its application to fault diagnosis of rolling bearings[J]. Journal of Yanshan University, 2013, 37(2): 179-183.
[15]刘元峰, 赵玫. 基于奇异谱分析的混沌序列降噪[J]. 上海交通大学学报, 2003, 37(5): 778-780.
Liu Y F, Zhao M. DE-Noising of Chaotic Time Series Based on Singular Spectrum Analysis[J]. Journal of Shang Hai Jiao Tong University, 2003, 37(5): 778-780.
[16]Yang F Y, Song H, Sheng G H, et al. Partial discharge pattern recognition based on adaptive multi-resolution analysis of higher-order Singular Spectrum Entropy[C]//2016 International Conference on Condition Monitoring and Diagnosis (CMD). Xian, China, 2016: 829-832.
[17]杨向锋, 张效民, 李亚安. 一种基于高阶统计量的相空间重构方法[J]. 信号处理, 2006, 22(1): 5-8.
Yang X F, Zhang X M, Li Y A. State Space Reconstruction Based on Highter-Order Statistics[J]. Signal Processing, 2006,22(1): 5-8.
[18]Chen Z Y, Zeng X Q, Li W H, et al. Machine fault classification using deep belief network[C]// 2016 IEEE International. Instrumentation and Measurement Technology Conference Proceedings (I2MTC). Taipei, China, 2016: 1-6.
[19]张淑清, 胡永涛, 姜安琦, 等. 基于双树复小波和深度信念网络的轴承故障诊断[J]. 中国机械工程, 2017, 28(5): 532-536.
Zhang S Q, Hu Y T, Jiang A Q, et al. Bearing Fault Diagnosis Based on DTCWT and DBN[J]. China Mechanical Engineering, 2017, 28(5): 532-536.
[20]张淑清, 李新新, 张立国, 等. 基于符号分析的极大联合熵延迟时间求取方法[J]. 物理学报, 2013, 62(11): 118-123.
Zhang S Q, Li X X, Zhang L G, et al. Maximum joint entropy delay time method based on symbol analysis [J]. Acta Phys Sin, 2013, 62(11): 118-123. |