[1]Wu Z Q, Yu D Q. Application of improved bat algorithm for solar PV maximum power point tracking under partially shaded condition[J]. Applied Soft Computing, 2018, 62: 101-109.
[2]张任, 胥芳, 陈教料, 等. 基于PSO-RBF神经网络的锂离子电池健康状态预测[J]. 中国机械工程,2016, 27(21): 2975-2979.
Zhang R, Xu F, Chen J K, et al. Li-ion battery SOH prediction based on PSO-RBF neural network[J]. China Mechanical Engineering, 2016, 27(21): 2975-2979.
[3]赵天意, 彭喜元, 彭宇, 等. 改进卡尔曼滤波的融合型锂离子电池SOC估计方法[J]. 仪器仪表学报,2016, 37(7): 1441-1448.
Zhao T Y, Peng X Y, Peng Y, et al. Lithium-ion battery SOC estimation method with fusion improved Kalman filter algorithm[J]. China Journal of Scientific Instrument, 2016, 37(7): 1441-1448.
[4]陈则王,杨丽文,赵晓兵, 等. 基于改进无迹卡尔曼滤波的锂电池SOC在线估计[J]. 计量学报, 2019,39(1):40-49.
Chen Z W, Yang L W, Zhao X B, et al. Online Estimation of SOC for Li-ion Battery Based on An Improved
Unscented Kalman Filters Approach[J]. Acta Metrologica Sinica, 2019,39(1):40-49.
[5] Gregory L P. Kalman-filter SOC estimation for LIB cells[C]// EVAAP. Proceedings of the 19th International Electric Vehicle Symposium. Pusan, South Korea, 2002: 527-538.
[6]Charkhgard M, Farrokhi M. State-of-charge estimation for lithium-ion batteries using neural networks and EKF[J]. IEEE Transaction on Industrial Electronics, 2010, 57(12): 4178-4187.
[7]Zhang Z L, Cheng X, Lu Z Y, SOC Estimation of Lithium-ion Battery With AEKF and Wavelet Transform Matrix[J]. IEEE Transaction on power electronics, 2017, 32(10): 7626-7634.
[8]尹安东, 张万兴, 赵韩, 等. 基于神经网络的磷酸铁锂电池SOC预测研究[J].电子测量与仪器学报,2011, 25(5): 433-437.
Yin A D, Zhang W X, Zhao H, et al. Research on estimation for SOC of LiFePO4 Li-ion battery based on neural network[J]. Journal of electronic measurement and instrument, 2011, 25(5): 433-437.
[9]陈智军, 韩超, 陈涛, 等. 基于人工神经网络的乐甫波液体密度粘度并行检测研究[J]. 计量学报,2017, 38(6): 721-724.
Chen Z J, Han C, Chen T, et al. Research on Parallel Measurement of Liquid Density and Viscosity Using Love Wave Based on Artificial Neural Networks[J]. Acta Metrologica Sinica, 2017, 38(6): 721-724.
[10]张淑清, 任爽, 陈荣飞, 等. 基于大数据简约及PCA改进RBF网络的短期电力负荷预测[J]. 计量学报,2018, 39(3): 392-396.
Zhang S Q, Ren S, Chen R F, et al. Short-term Power Load Forecast Based on Big Data Reduction and PCA-improved RBF Network[J]. Acta Metrologica Sinica, 2018, 39(3): 392-396.
[11]Hu X S, Li S B, Yang Y L. Advanced Machine Learning Approach for Lithium-ion Battery State Estimation in Electric Vehicles[J]. IEEE Transaction on Transportation Electrification, 2016, 2(2): 140-149.
[12]Chen J, Xu C F, Wu C S. Adaptive Fuzzy Logic Control of Fuel-Cell-Battery Hybrid Systems for Electric Vehicles[J]. IEEE transactions on industrial information, 2018, 14(1): 292-300.
[13]Hu X S, Sun F C. Fuzzy Clustering Based Multi-model Support Vector Regression State of Charge Estimator for Lithium-ion Battery of Electric[C]// IEEE. International Conference on Intelligent Human-Machine Systems and Cybernetics. Hangzhou, 2009: 392-396.
[14]丁知平, 刘超, 牛培峰, 等. IGSA-LSSVM软测量模型预测燃煤锅炉NOx排放量[J]. 计量学报,2018, 39(3): 414-419.
Ding Z P, Liu C, Niu P F, et al. GSA-LSSVM Soft Sensing Model for Predicting NOx Emission of Coal-fired Boiler[J]. Acta Metrologica Sinica, 2018, 39(3): 414-419.
[15]王琪, 孙玉坤, 倪福银, 等. 混合动力汽车电池内部状态预测的贝叶斯极限学习机方法[J]. 中国机械工程,2016, 27(22): 3118-3122.
Wang Q, Sun Y K, Ni F Y, et al. Prediction of Internal States of Battery in HEV by BELM[J]. China Mechanical Engineering, 2016, 27(22): 3118-3122.
[16]Huang G B, Zhu Q Y, Siew C. Extreme learning machine: Theory and application[J]. Neurocomputing, 2006, 70(1-3): 489-501.
[17]彭显刚, 郑伟钦, 林利祥, 等. 考虑负荷自适应检测和修复的鲁棒极限学习机短期负荷预测方法[J]. 中国电机工程学报, 2016, 36(23): 6409-6417.
Peng X G, Zheng W Q, Lin L X,et al. Short-term Load Forecasting Method Based on Outlier Robust Extreme Learning Machine Considering Adaptive Load Detection and Repair[J]. Proceeding of the CSEE, 2016, 36(23): 6409-6417.
[18]Zhang K, Luo M X. Outlier-robust extreme learning machine for regression problems[J]. Neurocomputing, 2015, 151: 1519-1527.
[19]Bartlett P. The sample complexity of pattern classification with neural networks: the size of the weights is more important than the size of the network[J]. IEEE Trans Inf Theory, 1998, 44(2): 525-536.
[20]Deng W Y, Zheng Q H, Chen L. Regularized extreme learning machine[C]//IEEE. IEEE Symposium on Computational Intelligence and Data Mining. Nashville, TN, USA, 2009: 389-395.
[21]Yang J F, Zhang Y. Alternating direction algorithms for -problems in compressive sensing[J]. SIAM J Sci Comput, 2011, 33(1) 250-278.
[22]Meng X B, Gao X Z., Lu L H. A new bio-inspired optimization algorithm: bird swarm algorithm[J]. Journal of Experimental and Theoretical Artificial Intelligence, 2016, 28(4): 673-687.
[23]Wu Z Q, Yu D Q, Kang X H. Application of improved chicken swarm optimization for MPPT in photovoltaic system[J]. Optim Control Appl Meth, 2018, 39(2): 1-14.
|