|
|
Calibration Method of Strain Sensor Metrological Characteristics |
YUAN Xing-qi1,CHEN Kai1,2,CUI Jian-jun2,YAN Yong-gang1,SHU Hong-lin1,SHEN Xue-ping2 |
1. School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, China
2. National Institute of Metrology, Beijing 100029, China |
|
|
Abstract In order to evaluate the metrological characteristics of strain sensor (strain gauge) reasonably, the differences of the metrological characteristics in the relevant national standards and technical specifications of the strain gauge were analyzed, and the vibrating wire strain gauge was taken as an example to sum up the metrological characteristic parameters of the strain gauge. The existing status quo of strain gauge calibration was studied, and a high precision calibration device based on laser interferometry was designed, whose gauge range could reach 500 mm. Then a set of high-precision calculation methods of metrological characteristics was proposed. The characteristics of the strain sensor were tested by experiments, and the uncertainty of the calibration of the integrated error U=0.10% (including factor k=2) was evaluated.
|
Received: 13 February 2018
Published: 06 November 2018
|
|
|
|
|
[1]Wu B, Lu H, Chen B, et al. Study on Finite Element Model Updating in Highway Bridge Static Loading Test Using Spatially-Distributed Optical Fiber Sensors[J]. Sensors, 2017, 17(7):1657.
[2]张伟,张跃,张智敏,等. 应变式力传感器动态特性研究及动态补偿[J]. 计量学报,2012,33(1): 35-38.
[3]Ren L, Jiang T, Jia Z G, et al. Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology[J]. Measurement, 2018, 122:57–65.
[4]Tsushima N, Su W, Gutierrez H, et al. Monitoring multi-axial vibrations of flexible rockets using sensor-instrumented reference strain structures[J]. Aerospace Science & Technology, 2017, 71:285–298.
[5]戴显著. 工具式应变传感器在桥梁检测中的应用研究[D]. 重庆:重庆交通大学, 2015.
[6]GB/T 3408.1—2008 大坝监测仪器应变计第1部分:差动电阻式应变计[S].
[7]GB/T 3408.2—2008 大坝监测仪器应变计第2部分:振弦式应变计[S].
[8]何祖源 刘庆文 陈嘉庚. 面向地壳形变观测的超高分辨率光纤应变传感系统[J]. 物理学报, 2017, 66(7): 074208.
[9]JJG 1046—1994金属电阻应变计的工作特性 [S].
[10]GB/T 13992—2010 金属粘贴式电阻应变计[S].
[11]GB/T 18459—2001传感器主要静态性能指标计算方法[S].
[12]GB/T 13606—2007土工试验仪器 岩土工程仪器 振弦式传感器通用技术条件[S].
[13]GB/T 7665—2005传感器通用术语[S].
[14]GB/T 50279—2014 岩土工程基本术语标准[S].
[15]GB/T 15406—2007 岩土工程仪器基本参数及通用技术条件[S].
[16]JJF 1305—2011 线位移传感器校准规范[S].
[17]华南理工大学.一种振弦式应变传感器校准装置:CN200910213983.6[P].2010-06-16.
[18]张勇, 梁平, 张玉珍,等. 振弦应变传感器校准装置的设计[J]. 工业仪表与自动化装置, 2011,(4):52–55.
[19]广州市广材试验仪器有限公司.振弦式应变计标定仪:CN201620713233.0[P].2016-12-28.
[20]Huang W, Zhang W, Li F. Swept optical SSB-SC modulation technique for high-resolution large-dynamic-range static strain measurement using FBG-FP sensors.[J]. Optics Letters, 2015, 40(7):1406-1409.
[21]张旭东,苏永昌,叶孝佑. 光干涉法高精度材料线膨胀系数测量[J]. 计量学报, 2012, 33(1): 1–4.
[22]崔建军, 高思田. 线位移传感器校准及不确定度分析[J]. 计量学报, 2010, 31(z2): 169–173.
[23]王永宝, 赵人达, 陈列,等. 振弦式应变传感器温度修正试验[J]. 建筑科学与工程学报, 2017, 34(1):68–75.
[24]JJF 1401—2013 振弦式频率读数仪校准规范[S]. |
|
|
|