|
|
Ultrasonic B Image Defect Segmentation Method Based on Automatic Seeded Region Growing |
NI Hao,ZHENG Hui-feng,WANG Yue-bing,HU Liu-chen,CAO Yong-gang,ZHANG Kai |
Institute of Precision Measurement and Control, China Jiliang University, Hangzhou, Zhejiang 310018, China |
|
|
Abstract An ultrasound image defect segmentation algorithm based on automatic seeded region growing was proposed. First, the pre-segmentation of the ultrasound B image was performed by the Otsu method. Next, the seed starting points were set automatically by seeking the absolute background area. Then, the defects were segmented from the background area by regional growth algorithms. Finally, the defect recognition was further improved by digital morphological noise reduction method. Experimental results shown that the defects were segmented effectively by the proposed algorithm and good defect boundary information has also been provided. The efficiency of processing ultrasonic B images is improved and noise of B-scan image is mostly suppressed effectively.
|
Received: 11 October 2017
Published: 06 November 2018
|
|
Corresponding Authors:
Hui-feng ZHENG
E-mail: zjufighter@cjlu.edu.cn
|
|
|
|
[1]阮晴. 超声无损检测缺陷识别方法研究[D]. 长沙: 国防科学技术大学, 2011.
[2]呼刘晨,郑慧峰,方漂漂,等. 基于振动声调制和时间反转法的微裂纹定位检测研究[J]. 计量学报, 2017, 38(6): 744-748.
[3]吕江明, 郑慧峰, 唐廷浩,等. 基于形态学的超声C扫描图像缺陷边缘检测[J]. 计量学报, 2014, 35(6):607-611.
[4]杨晔, 潘希德, 庄健. 一种针对超声检测图像的自适应阈值设置方法[J]. 西安交通大学学报, 2015, 49(1):127-132.
[5]邱东岳, 吉喆, 檀朝彬,等. 一种医用超声智能检定系统[J]. 计量技术, 2017(10): 55-57.
[6]李秋锋, 石立华, 梁大开,等. 混凝土检测中基于数字滤波的传感器补偿方法[J]. 南京航空航天大学学报, 2008, 40(1):55-59.
[7]曹彪. 基于区域生长的OCT图像分割算法研究[D]. 北京: 北京理工大学, 2015.
[8]彭智浩, 杨风暴, 王志社,等. 基于数学形态学和自动区域生长的红外目标提取[J]. 红外技术, 2014, 36(1):47-52.
[9]倪鼎, 马洪兵. 基于区域生长的多源遥感图像配准[J]. 自动化学报, 2014, 40(6):1058-1067.
[10]白帆. 基于机器视觉的注塑加工检测系统的研究[D]. 杭州: 中国计量大学, 2016.
[11]禹晶, 孙卫东, 肖创柏. 数字图像处理 : Digital image processing[M]. 北京: 机械工业出版社, 2015.
[12]Serra J. Image Analysis and Mathematical Morphology[M]. New York: Academic, 1982.
[13]Li Z, Yang Y, Jiang W. Multi-scale Morphologic Tracking Approach for Edge Detection[C]// IEEE.International Conference on Image and Graphics.San Antonio, USA, 2007: 358-362.
[14]程淑红, 高许, 程树春,等. 基于计算机视觉的运动车辆检测[J]. 计量学报, 2017, 38(3): 288-291.
[15]毛星云. OpenCV3编程入门[M]. 北京: 电子工业出版社, 2015.
[16]范伟. 基于区域生长的彩色图像分割算法[J]. 计算机工程, 2010, 36(13):192-193.
[17]郭建星, 刘松林, 倪丽,等. 一种改进的基于最大类间方差的图像分割方法[J]. 仪器仪表学报, 2005, 26(s1):665-666.
[18]Bradski G R, Kaehler A. Learning OpenCV[M]. Sebastopol: Oreilly Media, 2009. |
|
|
|