[1]Kennedy J. Particle swarm optimization [M]//Claude Sammut, Geoffrey I Webb. Encyclopedia of Machine Learning. New York: Springer US, 2010: 760-766.
[2]Dorigo M , Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents [J]. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 1996, 26(1): 29-41.
[3]Yang X S. Firefly algorithm, stochastic test functions and design optimization [J]. International Journal of Bio-Inspired Computation, 2010, 2(2): 78-84.
[4]Eusuff M, Lansey K, Pasha F. Shuffled frog-leaping algorithm: a memetic meta-heuristic for discrete optimization [J]. Engineering Optimization, 2006, 38(2): 129-154.
[5]Karaboga D, Basturk B. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems [M] // Patricia Melin , Oscar Castillo , Luis T Aguilar, et al.
Foundations of Fuzzy Logic and Soft Computing. Heidelberg : Springer Berlin Heidelberg , 2007: 789-798.
[5]Yang X S, Deb S. Engineering optimisation by cuckoo search [J]. International Journal of Mathematical Modelling and Numerical Optimisation, 2010, 1(4): 330-343.
[6]Rao R V, Savsani V J, Vakharia D P. Teaching-learning-based optimization: a novel method for constrained mechanical design optimization problems [J]. Computer-Aided Design, 2011, 43(3): 303-315.
[7]Gandomi A H, Alavi A H. Krill herd: a new bio-inspired optimization algorithm [J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(12): 4831-4845.
[1]Li G Q, Niu P F, Zhang W P, et al. Model NOx emissions by least squares support vector machine with tuning based on ameliorated teaching-learning-based optimization [J]. Chemometrics and Intelligent Laboratory Systems, 2013, 126(8): 11-20.
[2]Rao R V, Patel V. An improved teaching-learning-based optimization algorithm for solving unconstrained optimization problems[J]. Scientia Iranica, 2013, 20(3): 710-720.
[3]García J A M, Mena A J G. Optimal distributed generation location and size using a modified teaching-learning based optimization algorithm[J]. International journal of electrical power & energy systems,2013, 50(1): 65-75.
[4]牛培峰,王培坤,李国强,等.基于自由搜索算法和支持向量机的燃煤锅炉NOx 建模与优化[J]. 计量学报,2014,35(6):626-630.
[5]牛培峰,麻红波,李国强,等.基于GSA-SVM的循环流化床锅炉NOx排放特性模型[J].计量学报,2013,34(6):602-606.
[6]牛培峰,王丘亚,马云鹏,等.基于量子自适应鸟群算法的锅炉NOx排放特性研究[J]. 计量学报, 2017,38(6):770-775.
[7]牛培峰,马云鹏,张京,等.基于相关向量机的电站锅炉NOx 燃烧优化[J]. 计量学报, 2016,37(2):626-630.
[8]Huang G B, Zhu Q Y, Siew C K. Extreme learning machine: a new learning scheme of feedforward neural networks[C]//IEEE International Joint Conference on Neural Networks. Budapest,Hungary,2004:985-990.
[9]拓守恒, 雍龙泉, 邓方安. “教与学” 优化算法研究综述[J]. 计算机应用研究, 2013, 30(7): 1933-1938.
[10]冯艳红, 刘建芹, 贺毅朝. 基于混沌理论的动态种群萤火虫算法[J]. 计算机应用, 2013, 33(3): 191-196. |