|
|
The Error Analysis of the Non-orthogonal Total Station Coordinate Measurement System |
WU Bin1,DING Wen1,YANG Feng-ting1,XUE Ting2 |
1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China;
2. School of Electrical and Information Engineering, Tianjin University, Tianjin 300072, China |
|
|
Abstract According to the Non-orthogonal total station system principle, the main sources of the system measurement error are the rotation angle errors of rotary tables and the distance measurement error of the laser range finder. Using GUM algorithm, the uncertainties of these two sources are estimated and the system measurement uncertainty is evaluated. The result is validated by the simulation on MATLAB and the experiment conducted in the laboratory. The results show that when the distance is constant, the measurement uncertainty is almost independent of the horizontal angle, and increases with the absolute value of the vertical angle. When the angle value is constant, the measurement uncertainty increases with the distance from the measured point and the calibration point on the collimated axis.The accuracy of the simulation results is preliminarily verified by experiments.
|
Received: 17 May 2017
Published: 27 September 2017
|
|
|
|
|
[1]Franceschini F, Galetto M, Maisano D, et al. Large-scale dimensional metrology (LSDM): from tapes and theodolites to multi-sensor systems[J]. International Journal of Precision Engineering and Manufacturing, 2014, 15(8):1739-1758.
[2]叶声华, 邾继贵, 张滋黎,等. 大空间坐标尺寸测量研究的现状与发展[J]. 计量学报, 2008, 29(z1):1-6.
[3]李洋, 马骊群, 曹铁泽,等. 基于多便携式坐标测量设备的统一空间测量网络[J]. 计量学报, 2014,35(z1):54-58.
[4]唐七星,余晓芬,王标. 超大尺寸激光测距大型测控网络研制[J]. 计量学报, 2016, 37(4): 360-365.
[5]吴斌, 杨松. 非正交轴系激光经纬仪测量技术研究[J]. 激光技术, 2015, 39(5):603-609.
[6]吴斌, 谢胜文. 非正交轴系“激光经纬仪”视准轴校正方法[J]. 光电子·激光, 2015,(9):1700-1706.
[7]Wu B, Yang F, Ding W, et al. A novel calibration method for non-orthogonal shaft laser theodolite measurement system[J]. Review of Scientific Instruments, 2016, 87(3):351-356.
[8]吕烔兴. 四元数演算与刚体定位问题[J]. 南京航空航天大学学报, 1978,(4):159-172.
[9]刘俊峰. 三维转动的四元数表述[J]. 大学物理, 2004, 23(4):39-43.
[10]费业泰. 误差理论与数据处理[M]. 北京:机械工业出版社, 2015.
[11]郭敬滨, 曹红艳, 王克新,等. 转台分度误差的检定及补偿模型的建立[J]. 天津大学学报(自然科学与工程技术版), 2014, 47(6):524-529.
[12]JJF1059.1-2012 测量不确定度评定与表示[S].
[13]杨凡, 范百兴, 李广云,等. 激光跟踪仪动态测量精度测试[J]. 计量学报, 2014, 35(z1):119-122. |
|
|
|