|
|
Feature Frequency Extraction Method Based on Mean Envelope ITD and Spectral Kurtosis |
ZHANG Shu-qing,DONG Yu-lan,ZHANG Li-guo,YAN Bing,HUANG Wen-jing,XU Jian-tao,HE Peng |
The Key Lab of Measurement Technology and Instrumentation of Hebei Province,Institute of Electrical Engineering, Yanshan University, Qinhuangdao, Hebei 066004, China |
|
|
Abstract A feature frequency extraction method based on mean envelope ITD and spectral kurtosis is proposed.Was applied to the bearing fault diagnosis, the vibration signal was first decomposed and reconstructed by the mean ITD. Then the resonance frequency band was selected automatically through the spectrum kurtosis. Finally, the bearing fault could be diagnosed by comparing the envelope spectrum and the characteristic frequency. The analysis result to the data from Case Western Reserve University bearing center and real project proves that it could get more obvious spectrum and more accurate diagnosis by the mean envelope ITD and spectral kurtosis method.
|
Received: 30 November 2015
Published: 11 August 2017
|
|
|
|
|
[1]罗志增,袁飞龙,高云园. 小波和希尔伯特变换在脑电信号消噪中的对比研究[J]. 计量学报, 2013, 34(6): 567-572.
[2]张进,冯志鹏, 褚福磊. 基于时间-小波能量谱的齿轮故障诊断[J]. 振动与冲击, 2011, 30(1): 157-161.
[3]时培明, 李庚, 韩东颖, 等. 基于延拓和窗函数的HHT端点效应改进方法[J]. 计量学报, 2013, 34 (5): 491-496.
[4]程军圣, 杨怡, 杨宇. 局部特征尺度分解方法及其在齿轮故障诊断中的应用[J]. 机械工程学报, 2012, 48(9): 64-71.
[5]孟宗, 李姗姗, 王亚超. 基于LMD和局域时频熵的旋转机械故障诊断方法[J]. 计量学报, 2015, 36 (1): 77-81.
[6]Frei M G, Ivan O. Intrinsic time-scale decomposition: time-frequency-energy analysis and real-time filtering of non-stationary signals [J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Science, 2007, 463(2078): 321-342.
[7]程军圣, 郑近德, 杨宇. 一种新的非平稳信号分析方法——局部特征尺度分解法[J]. 振动工程学报, 2012, 25(2): 215-220.
[8]谢平,杨玉昕,江国乾, 等.基于局部均值分解的滚动轴承故障诊断新方法[J].计量学报, 2014, 35 (1): 73-77.
[9]罗颂荣, 程军圣, 杨宇. 基于本征时间尺度分解和变量预测模型模式识别的机械故障诊断[J]. 振动与冲击, 2013, 32(13):43-48.
[10]张巧革, 刘志刚, 陈刚. 暂态振荡信号频率检测的Morlet小波谱峭度法[J]. 电力系统及其自动化学报, 2013,25(5):1-6.
[11]Antoni J. Fast computation of the kurtogram for the detection of transient faults [J]. Mechanical Systems and Signal Processing, 2007, 21(1): 108-124.
[12]安学利, 蒋东翔, 陈杰, 等. 基于ITD和LS-SVM的风力发电机组轴承故障诊断[J]. 电力自动化设备, 2011, 31(9): 10-13.
[13]蔡改改, 刘海洋, 黄伟国, 等. 自适应谱峭度滤波方法及其振动信号检测应用[J]. 振动、测试与诊断,2014, 34(2): 212-217.
[14]苏文胜, 王奉涛, 张志新, 等. EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J]. 振动与冲击, 2010, 29(3): 18-21.
[15]The Case Western Reserve University Bearing Data Center Website. Bearing data center seeded fault test data[EB]. tttp://www.eecs.case.edu/laboratory/bearing/download.html,2007-11-27. |
|
|
|