2025年04月06日 星期日 首页   |    期刊介绍   |    编 委 会   |    投稿指南   |    期刊订阅   |    统合信息   |    联系我们
计量学报  2024, Vol. 45 Issue (10): 1533-1540    DOI: 10.3969/j.issn.1000-1158.2024.10.14
  力学计量 本期目录 | 过刊浏览 | 高级检索 |
基于优化变分模态分解和包络峭度的轴承故障诊断
刘烽1,陈学军2,张磊1,杨康3
1.福建农林大学机电工程学院,福建福州350108
2.莆田学院新能源装备检测福建省高校重点实验室,福建莆田351100
3.福州大学机械工程及自动化学院,福建福州350116
Bearing Fault Diagnosis Based on Optimized VMD and Envelope Kurtosis
LIU Feng1,CHEN Xuejun2,ZHANG Lei1,YANG Kang3
1. College of Mechanical and Electrical Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350108, China
2. Fujian Key Laboratory of New Energy Equipment Testing, Putian University, Putian, Fujian 351100, China
3. College of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, Fujian 350116, China
全文: PDF (658 KB)   HTML (1 KB) 
输出: BibTeX | EndNote (RIS)      
摘要 针对变分模态分解(VMD)的分解层数K和惩罚因子α难以选择问题,提出了用减法平均优化器(SABO)对参数寻优的方法。首先,采用SABO对K和α进行寻优,输出最优参数组合并代入到VMD中,将原始振动信号分解得到K个模态分量;然后,用最大包络峭度为指标提取K个模态分量中峭度最大的分量作为最优分量,并计算其相关时域和熵理论特征参数构造特征向量样本集;最后,将特征向量样本集输入到经网格搜索和五折交叉验证调参的支持向量机(SVM)中进行故障诊断。为了验证该方法的有效性,利用凯斯西储大学轴承数据集进行实验,实验结果表明:该方法分类效果更好,准确率达到99.44%;基于江南大学3种不同工况的轴承数据实验,最终故障诊断准确率都达到了95%以上。
服务
把本文推荐给朋友
加入我的书架
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘烽
陈学军
张磊
杨康
关键词 力学计量滚动轴承故障诊断变分模态分解减法平均优化器包络峭度优化算法    
Abstract:In view of the difficulty in selecting the decomposition layer K and penalty factor α of variational mode decomposition (VMD), a subtraction-average-based optimizer (SABO) is proposed to optimize the parameters. Firstly, the SABO is used to optimize K and α, output the optimal parameter combination, and substitute it into VMD to decompose the original vibration signal into K modal components. Then, the maximum envelope kurtosis is used as the index to extract the component with the largest kurtosis among the K modal components as the optimal component, and the eigenvector sample set is constructed by calculating the relevant time-domain and entropy theory characteristic parameters of the optimal component. Finally, the eigenvector sample set is input into the support vector machine (SVM) with mesh search and 5-fold cross-validation for fault diagnosis. To verify the effectiveness of this method, experiments were conducted using the bearing dataset from Case Western Reserve University. The experimental results show that the classification effect of the method is better, and the accuracy rate is 99.44%. Based on the bearing data set experiments of three different working conditions in Jiangnan University, the final fault diagnosis accuracy rate reaches more than 95%.
Key wordsmechanics metrology    rolling bearings    fault diagnosis    VMD    SABO    envelope kurtosis    optimization algorithm
收稿日期: 2023-10-31      发布日期: 2024-09-30
PACS:  TB936  
  TB973  
基金资助:福建省自然科学基金(2022J011169)
通讯作者: 陈学军(1980-),男,福建泉州人,莆田学院教授,硕士生导师,主要从事装备监测与故障诊断方面的研究。Email: cxjnet@126.com     E-mail: cxjnet@126.com
作者简介: 刘烽(2000-),男,江西赣州人,福建农林大学机电工程学院硕士研究生,研究方向为故障诊断。Email: 2247507878@qq.com
引用本文:   
刘烽,陈学军,张磊,杨康. 基于优化变分模态分解和包络峭度的轴承故障诊断[J]. 计量学报, 2024, 45(10): 1533-1540.
LIU Feng,CHEN Xuejun,ZHANG Lei,YANG Kang. Bearing Fault Diagnosis Based on Optimized VMD and Envelope Kurtosis. Acta Metrologica Sinica, 2024, 45(10): 1533-1540.
链接本文:  
http://jlxb.china-csm.org:81/Jwk_jlxb/CN/10.3969/j.issn.1000-1158.2024.10.14     或     http://jlxb.china-csm.org:81/Jwk_jlxb/CN/Y2024/V45/I10/1533
京ICP备:14006989号-1
版权所有 © 《计量学报》编辑部
地址:北三环东路18号(北京1413信箱)  邮编:100029 电话:(010)64271480
本系统由北京玛格泰克科技发展有限公司设计开发  技术支持:support@magtech.com.cn